Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors

纳米片 材料科学 锂(药物) 电容器 配体(生物化学) 金属锂 离子 纳米技术 金属 金属有机骨架 无机化学 电极 受体 物理化学 有机化学 冶金 电气工程 电解质 电压 吸附 内分泌学 工程类 化学 生物化学 医学
作者
Xuhuan Xiao,Xinglan Deng,Ye Tian,Shusheng Tao,Zirui Song,Wentao Deng,Hongshuai Hou,Guoqiang Zou,Xiaobo Ji
出处
期刊:Nano Energy [Elsevier]
卷期号:103: 107797-107797 被引量:54
标识
DOI:10.1016/j.nanoen.2022.107797
摘要

Two-dimensional (2D) metal-organic frameworks (MOFs) exhibit great promise as high-energy anode materials for next-generation lithium-ion capacitors (LICs) due to their tunable chemistry and short ion transport paths. Nevertheless, high-throughput production of ultrathin 2D MOFs and energy storage mechanism analysis are still full of challenging. Here, theoretical calculations indicate that partial introduction of Fe in Co sites can enhance interaction of metal centers with water in solvents due to the strong 3d-2p orbital binding energy, which induces ultrathin nanosheets, resulting in exposure of high-density ligand active sites, lower band gap and higher Young modulus during lithium insertion. Greatly, ultrathin 2D Co/Fe-BDC nanosheets are obtained with a bottom-up method and can be scaled up to high-throughput production. In/ex-situ results further reveal highly reversible insertion/extraction reactions accompanied by crystalline to amorphous for Co/Fe-BDC anodes. LICs with optimal Co 4 Fe-BDC anode deliver high energy density (199.7 Wh kg -1 ) and power density (10000 W kg -1 ), together with superior cycle lifespan. This work offers in-depth insights for the high-throughput synthesis and the storage mechanism in 2D MOFs. A metal-organic framework with ultrathin two-dimensional nanosheet structures is fabricated by a simple bottom-up stirring method at room temperature and can be scaled up to high-throughput production. It exhibits enhanced lithium storage performance due to microstructure and element substitution, enabling the assembled lithium-ion capacitors to deliver high energy-power characteristic. • Ultrathin nanosheets metal-organic frameworks are manufactured by a room-temperature stirring method with the potential for scale-up production. • The DFT calculations reveal the introduction of Fe induces two-dimensional morphological growth and enhances electrochemical kinetics. • In/ex-situ results implicate Co/Fe-BDC anodes with high-density lithium storage sites for insertion/extraction accompanied by crystalline to amorphous. • The optimal LICs deliver high energy density (199.7 Wh kg -1 ) and power density (10000 W kg -1 ) as well as superior cycle lifespan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛乃唐完成签到 ,获得积分10
刚刚
刚刚
枸杞子发布了新的文献求助10
1秒前
婕哥发布了新的文献求助10
1秒前
我是老大应助绝世冰淇淋采纳,获得10
2秒前
喵不二完成签到,获得积分10
2秒前
sk夏冰完成签到 ,获得积分10
2秒前
萱1988发布了新的文献求助10
2秒前
3秒前
余南发布了新的文献求助10
3秒前
SciGPT应助34101127采纳,获得10
3秒前
lijg71完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
bab发布了新的文献求助10
4秒前
4秒前
4秒前
李健应助nana采纳,获得10
5秒前
薇薇辣完成签到 ,获得积分10
5秒前
lkh完成签到,获得积分10
5秒前
gaogao完成签到,获得积分10
5秒前
6秒前
yang完成签到,获得积分10
7秒前
7秒前
简单的小土豆完成签到 ,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得60
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
风中的笑白完成签到,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458