Abnormal dynamic functional network connectivity in first-episode, drug-naïve patients with major depressive disorder

重性抑郁障碍 接收机工作特性 萧条(经济学) 动态功能连接 心理学 生物标志物 评定量表 毒品天真 内科学 静息状态功能磁共振成像 医学 神经科学 药品 精神科 心情 发展心理学 生物 宏观经济学 经济 生物化学
作者
Weiliang Yang,Yuting Wang,Wen Qin,Meijuan Li,Huan Mao,Chi Zhou,Xueying Liu,Jie Li
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:319: 336-343 被引量:9
标识
DOI:10.1016/j.jad.2022.08.072
摘要

Dynamic functional network connectivity (dFNC) could capture temporal features of spontaneous brain activity during MRI scanning, and it might be a powerful tool to examine functional brain network alters in major depressive disorder (MDD). Therefore, this study investigated the changes in temporal properties of dFNC of first-episode, drug-naïve patients with MDD. A total of 48 first-episode, drug-naïve MDD patients and 46 age- and gender-matched healthy controls were recruited in this study. Sliding windows were implied to construct dFNC. We assessed the relationships between altered dFNC temporal properties and depressive symptoms. Receiver operating characteristic (ROC) curve analyses were used to examine the diagnostic performance of these altered temporal properties. The results showed that patients with MDD have more occurrences and spent more time in a weak connection state, but with fewer occurrences and shorter dwell time in a strong connection state. Importantly, the fractional time and mean dwell time of state 2 was negatively correlated with Hamilton Depression Rating Scale (HDRS) scores. ROC curve analysis demonstrated that these temporal properties have great identified power including the fractional time and mean dwell time in state 2, and the AUC is 0.872, 0.837, respectively. The AUC of the combination of fractional time and mean dwell time in state 2 with age, gender is 0.881. Our results indicated the temporal properties of dFNC are altered in first-episode, drug-naïve patients with MDD, and these changes' properties could serve as a potential biomarker in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油完成签到,获得积分10
刚刚
Kiana完成签到,获得积分10
1秒前
思有完成签到 ,获得积分10
2秒前
小彭完成签到,获得积分10
2秒前
追尾的猫完成签到,获得积分20
2秒前
duanhahaha完成签到,获得积分10
2秒前
全球完成签到,获得积分20
2秒前
zhk发布了新的文献求助10
3秒前
付小佳发布了新的文献求助20
3秒前
优秀含羞草完成签到,获得积分10
3秒前
Deannn778发布了新的文献求助10
3秒前
4秒前
安然完成签到,获得积分20
4秒前
4秒前
4秒前
一行发布了新的文献求助10
4秒前
博一博完成签到 ,获得积分10
4秒前
bkagyin应助Xccc采纳,获得10
5秒前
xiaowang发布了新的文献求助10
5秒前
6秒前
爆米花应助聪明的二休采纳,获得10
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
9秒前
小马甲应助Zz采纳,获得10
9秒前
haru发布了新的文献求助10
9秒前
wbshore发布了新的文献求助10
9秒前
执着道天发布了新的文献求助10
9秒前
www完成签到,获得积分10
10秒前
Cat完成签到,获得积分0
10秒前
我爱科研789完成签到,获得积分10
11秒前
JiaY完成签到,获得积分10
11秒前
情怀应助诚心问玉采纳,获得10
11秒前
科研椰子发布了新的文献求助10
11秒前
orixero应助Deannn778采纳,获得10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524288
求助须知:如何正确求助?哪些是违规求助? 4614892
关于积分的说明 14545209
捐赠科研通 4552780
什么是DOI,文献DOI怎么找? 2494969
邀请新用户注册赠送积分活动 1475675
关于科研通互助平台的介绍 1447375