纳米片
材料科学
法拉第效率
电解质
锂(药物)
箔法
阴极
化学工程
金属锂
纳米技术
金属
沉积(地质)
电极
复合材料
冶金
古生物学
物理化学
化学
内分泌学
沉积物
工程类
生物
医学
作者
Zhilin Yang,Wei Liu,Qian Chen,Xingguo Wang,Weili Zhang,Qiannan Zhang,Jinghan Zuo,Yong Yao,Xiaokang Gu,Kunpeng Si,Kai Liu,Jin-Liang Wang,Yongji Gong
标识
DOI:10.1002/adma.202210130
摘要
Lithium (Li)-metal batteries (LMBs) with stable solid electrolyte interphase (SEI) and dendrite-free formation have great potential in next-generation energy storage devices. Here, vertically aligned 3D Cu2 S nanosheet arrays are fabricated on the surface of commercial Cu foils, which in situ generate ultrathin Cu nanosheet arrays to reduce local current density and Li2 S layers on the surfaces to work as an excellent artificial SEI. It is found that Li presents a 3D-to-planar deposition model, and Li2 S layers are reversibly movable between the 3D nanosheet surface and 2D planar surface of Li during long-term cycling. This enables ultrasmooth and dense Li deposition at 1 mA cm-2 , presenting an average thickness of ≈53.0 µm at 10 mAh cm-2 , which is close to the theoretical Li foil thickness and is highly reversible at different cycles. Thus, 1150 stable cycles with high Coulombic efficiency (CE, 99.1%) at ether-based electrolytes and 300 stable cycles with high CE (98.8%) at carbonate electrolytes are realized in half-cell with a capacity of 1 mAh cm-2 at 1 mA cm-2 . When coupled with commercial cathodes (LiFePO4 or LiNi0.8 Co0.1 Mn0.1 O2 ), the full cells present substantially enhanced cyclability under high cathode loading, limited (or zero) Li excess, and lean electrolyte conditions, even at -20 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI