已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heuristic Evaluation in A-Star Algorithm for Enhanced Urban Uav Path Optimization

启发式 路径(计算) 明星(博弈论) A*搜索算法 计算机科学 数学优化 算法 数学 人工智能 计算机网络 数学分析
作者
Hari Balakrishnan,Abhilash Suryan,Anu P. Alex,S. Shanmuga Sundara Raj,Guang Zhang
标识
DOI:10.2139/ssrn.5079937
摘要

Energy-efficient solutions are a necessity for sustainable urban logistics. Unmanned aerial vehicles need to develop effective algorithms for path planning in areas with high levels of traffic, obstructions, and energy limits, particularly in urban settings. This study on "Cooperative Aerial Path Planning for Autonomous Air Mobility" emphasizes the integration of energy-efficient strategies with optimal path planning that maintain safety and efficiency. Effective path planning may significantly reduce energy usage by streamlining routes, eliminating pointless directional changes, and enabling safe navigation in the complicated environment provided by an urban setting. The A-star(A*) algorithm was tested using a simulation in a two-dimensional space with low-altitude urban airspace that had random obstacles, including use of Euclidean, Manhattan, Diagonal, Octile, Chebyshev, and Weighted A* heuristic functions. The outcome also shows that the Euclidean, Diagonal, Octile, and Chebyshev heuristics all had optimal paths within approximately the same computational time, especially with diagonal movement being allowed. The Manhattan heuristic was significantly worse in other respects, as it bounds the movement to grid-aligned directions leading to longer paths and higher computational cost. Weighted A* offers a compromise between path length and resource usage; thus flexibility is maintained across different scenarios. This will bring out the importance of heuristic choice in relation to path length and computational efficiency. Understanding this will further the development of UAV path planning in urban contexts, merging energy efficiency with operational effectiveness in the realm of sustainable urban logistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小马甲应助XXX采纳,获得10
3秒前
Aman发布了新的文献求助10
8秒前
乐乐应助吕不韦采纳,获得10
8秒前
8秒前
希希完成签到 ,获得积分10
10秒前
迷路冰颜完成签到 ,获得积分10
12秒前
13秒前
FFFFFF完成签到 ,获得积分10
18秒前
qq1203817826发布了新的文献求助20
20秒前
明理的曼凡应助xbchen采纳,获得10
21秒前
23秒前
John完成签到 ,获得积分10
24秒前
海贼学术完成签到 ,获得积分10
25秒前
28秒前
guozizi发布了新的文献求助30
29秒前
光亮语梦完成签到 ,获得积分10
29秒前
29秒前
爱洗澡的拖鞋完成签到 ,获得积分0
30秒前
31秒前
研友_VZG7GZ应助碳水化合物采纳,获得10
32秒前
吕不韦发布了新的文献求助10
32秒前
落后的凝梦完成签到 ,获得积分10
33秒前
孟一完成签到 ,获得积分10
34秒前
35秒前
喜欢看夜里的天空完成签到,获得积分10
35秒前
36秒前
xiaobai发布了新的文献求助10
37秒前
chenzy完成签到,获得积分10
39秒前
40秒前
今后应助小胡萝白采纳,获得10
40秒前
44秒前
1107任务报告完成签到 ,获得积分10
50秒前
hyhyhyhy发布了新的文献求助10
50秒前
慎二完成签到 ,获得积分10
51秒前
51秒前
百地希留耶完成签到 ,获得积分10
53秒前
53秒前
研友_VZG7GZ应助热心盼波采纳,获得30
55秒前
充电宝应助xiaobai采纳,获得10
55秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749