Heuristic Evaluation in A-Star Algorithm for Enhanced Urban Uav Path Optimization

启发式 路径(计算) 明星(博弈论) A*搜索算法 计算机科学 数学优化 算法 数学 人工智能 计算机网络 数学分析
作者
Hari Balakrishnan,Abhilash Suryan,Anu P. Alex,S. Shanmuga Sundara Raj,Guang Zhang
标识
DOI:10.2139/ssrn.5079937
摘要

Energy-efficient solutions are a necessity for sustainable urban logistics. Unmanned aerial vehicles need to develop effective algorithms for path planning in areas with high levels of traffic, obstructions, and energy limits, particularly in urban settings. This study on "Cooperative Aerial Path Planning for Autonomous Air Mobility" emphasizes the integration of energy-efficient strategies with optimal path planning that maintain safety and efficiency. Effective path planning may significantly reduce energy usage by streamlining routes, eliminating pointless directional changes, and enabling safe navigation in the complicated environment provided by an urban setting. The A-star(A*) algorithm was tested using a simulation in a two-dimensional space with low-altitude urban airspace that had random obstacles, including use of Euclidean, Manhattan, Diagonal, Octile, Chebyshev, and Weighted A* heuristic functions. The outcome also shows that the Euclidean, Diagonal, Octile, and Chebyshev heuristics all had optimal paths within approximately the same computational time, especially with diagonal movement being allowed. The Manhattan heuristic was significantly worse in other respects, as it bounds the movement to grid-aligned directions leading to longer paths and higher computational cost. Weighted A* offers a compromise between path length and resource usage; thus flexibility is maintained across different scenarios. This will bring out the importance of heuristic choice in relation to path length and computational efficiency. Understanding this will further the development of UAV path planning in urban contexts, merging energy efficiency with operational effectiveness in the realm of sustainable urban logistics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
blank发布了新的文献求助10
1秒前
1秒前
领导范儿应助黄健伟采纳,获得10
1秒前
Jasper应助难过的微生物采纳,获得10
1秒前
beckham发布了新的文献求助30
2秒前
2秒前
3秒前
xxybm发布了新的文献求助10
3秒前
充电宝应助复杂鼠标采纳,获得10
3秒前
4秒前
核桃酥发布了新的文献求助10
5秒前
5秒前
xiaoyudianddd发布了新的文献求助10
6秒前
7秒前
小鹿发布了新的文献求助10
7秒前
Pandaer完成签到,获得积分10
8秒前
SUN完成签到,获得积分10
8秒前
8秒前
koi发布了新的文献求助10
8秒前
含蓄康发布了新的文献求助10
8秒前
Zn应助Macro采纳,获得10
8秒前
ding应助浅斟低唱采纳,获得10
9秒前
科研狗仔队完成签到,获得积分10
10秒前
晚睡早起学完成签到,获得积分10
10秒前
Akim应助糊涂的绿茶采纳,获得10
10秒前
和谐的语薇完成签到,获得积分20
10秒前
万能图书馆应助Wink14551采纳,获得30
11秒前
11秒前
Jasper应助pK采纳,获得10
11秒前
一丁点可爱完成签到 ,获得积分10
11秒前
11秒前
香蕉船上的蕉太狼应助wp采纳,获得10
11秒前
11秒前
七个丸子应助苗条的起眸采纳,获得10
12秒前
小西瓜完成签到 ,获得积分10
13秒前
sun发布了新的文献求助10
13秒前
13秒前
李健的小迷弟应助lllth采纳,获得10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524730
求助须知:如何正确求助?哪些是违规求助? 3105601
关于积分的说明 9275012
捐赠科研通 2802788
什么是DOI,文献DOI怎么找? 1538175
邀请新用户注册赠送积分活动 716104
科研通“疑难数据库(出版商)”最低求助积分说明 709191