Deep Convolutional Generative Adversarial Network for Improved Cardiac Image Classification in Heart Disease Diagnosis

人工智能 模式识别(心理学) 鉴别器 计算机科学 稳健性(进化) 深度学习 假阳性悖论 卷积神经网络 图像质量 二元分类 图像(数学) 数学 探测器 支持向量机 电信 生物化学 化学 基因
作者
S. Gurusubramani,B. Latha
标识
DOI:10.1007/s10278-024-01343-z
摘要

Heart disease is a fatal disease that causes significant mortality rates worldwide. The accurate and early detection of heart diseases is the most challenging task to save valuable lives. To avoid these issues, the Deep Convolutional Generative Adversarial Network (DCGAN) model is proposed that generates synthetic cardiac images. Here, two types of heart disease datasets such as the Sunnybrook Cardiac Dataset (SCD) and the Automated Cardiac Diagnosis Challenge (ACDC) dataset are selected to choose real cardiac images for implementation. The quality and consistency of the cardiac images are enhanced by preprocessed real cardiac images. In the DCGAN model, the generator is used for converting real cardiac images into synthetic images and the discriminator is responsible for differentiating real and synthetic cardiac images by binary classification decisions. To enhance the model's robustness and generalization ability, diverse augmentation techniques are implemented. The VGG16 model is applied in this paper for the image classification task and fine-tuned its parameters to optimize model convergence. For experimental validation, some of the significance metrics such as accuracy, precision, diagnostic time, peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), false positive rate (FPR), false negative rate (FNR), and mean squared error (MSE) are utilized. The extensive experimental evaluations are carried out based on this metrics and attained a performance rate of the proposed method as 98.83%, 1.17%, 3.2%, 41.78, 4.52, 0.932, and 1.6 s from accuracy, FPR, FNR, PSNR, MSE, SSIM, and diagnostic time, respectively. The experimental evaluation results demonstrate that the proposed heart disease diagnosis model attains superior performances than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助xiaoqiang采纳,获得10
1秒前
1秒前
wait发布了新的文献求助10
2秒前
顾矜应助yaoyh_gc采纳,获得10
2秒前
谭你脑瓜崩完成签到,获得积分10
2秒前
2秒前
Ganlou应助叶子采纳,获得10
3秒前
灵巧飞机完成签到,获得积分10
4秒前
Ava应助PROPELLER采纳,获得10
4秒前
zsc发布了新的文献求助10
4秒前
酷酷发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
聪慧易巧发布了新的文献求助10
7秒前
共享精神应助祺yix采纳,获得10
7秒前
Ashley完成签到 ,获得积分10
8秒前
思源应助吃饭采纳,获得10
8秒前
fixit发布了新的文献求助10
9秒前
HongChangze发布了新的文献求助10
9秒前
诩阽应助乐观的从云采纳,获得10
9秒前
9秒前
萌新求助完成签到,获得积分10
9秒前
今后应助傲娇的安筠采纳,获得10
10秒前
10秒前
段盼兰完成签到,获得积分0
11秒前
lulu完成签到,获得积分20
11秒前
Sunny--李完成签到,获得积分10
11秒前
小乌龟完成签到 ,获得积分10
11秒前
安在哉完成签到,获得积分10
11秒前
雪白鸿涛发布了新的文献求助10
12秒前
兴奋仙人掌完成签到,获得积分20
13秒前
呐呐应助Andy采纳,获得10
13秒前
研友_ZGR0jn完成签到,获得积分10
13秒前
正直宝贝发布了新的文献求助10
13秒前
123完成签到,获得积分10
14秒前
mingyue完成签到,获得积分10
15秒前
动听翠桃完成签到 ,获得积分20
15秒前
15秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262227
求助须知:如何正确求助?哪些是违规求助? 2902902
关于积分的说明 8323113
捐赠科研通 2572880
什么是DOI,文献DOI怎么找? 1397940
科研通“疑难数据库(出版商)”最低求助积分说明 653941
邀请新用户注册赠送积分活动 632516