Model-assisted CRISPRi/a library screening reveals central carbon metabolic targets for enhanced recombinant protein production in yeast

酵母 重组DNA 代谢工程 生物化学 生产(经济) 化学 生物 计算生物学 基因 宏观经济学 经济
作者
Xin Chen,Feiran Li,Xiaowei Li,Maximilian Otto,Yu Chen,Verena Siewers
出处
期刊:Metabolic Engineering [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.ymben.2024.11.010
摘要

Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guangshuang发布了新的文献求助10
刚刚
2897402853完成签到,获得积分10
刚刚
1秒前
1秒前
稳重的闭月完成签到,获得积分10
2秒前
陈yunchuan发布了新的文献求助10
2秒前
震震应助刘老师采纳,获得10
2秒前
大伟发布了新的文献求助10
3秒前
英姑应助科研小崩豆采纳,获得10
3秒前
科研通AI2S应助hqh采纳,获得10
3秒前
Nina完成签到,获得积分20
3秒前
轻松思枫完成签到,获得积分10
5秒前
5秒前
paper完成签到 ,获得积分10
5秒前
无辜乘云完成签到,获得积分10
5秒前
111发布了新的文献求助10
6秒前
研友_VZG7GZ应助秦春歌采纳,获得10
8秒前
8秒前
丿The灬Joker完成签到,获得积分10
8秒前
酷波er应助愉快的Jerry采纳,获得10
9秒前
9秒前
ding应助秋丶凡尘采纳,获得10
11秒前
11秒前
11秒前
轻松思枫发布了新的文献求助100
12秒前
12秒前
咕噜完成签到,获得积分10
12秒前
无限的依波完成签到,获得积分10
13秒前
陈yunchuan完成签到,获得积分10
13秒前
咎星完成签到,获得积分10
14秒前
14秒前
科研通AI5应助Nina采纳,获得10
14秒前
14秒前
Able阿拉基发布了新的文献求助10
15秒前
16秒前
科研通AI5应助harden9159采纳,获得10
16秒前
17秒前
111完成签到,获得积分10
18秒前
赘婿应助小鲤鱼在睡觉采纳,获得10
18秒前
宇文霆完成签到,获得积分10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774793
求助须知:如何正确求助?哪些是违规求助? 3320583
关于积分的说明 10201037
捐赠科研通 3035338
什么是DOI,文献DOI怎么找? 1665448
邀请新用户注册赠送积分活动 796972
科研通“疑难数据库(出版商)”最低求助积分说明 757667