Model-assisted CRISPRi/a library screening reveals central carbon metabolic targets for enhanced recombinant protein production in yeast

酵母 下调和上调 合成生物学 酿酒酵母 代谢通量分析 代谢工程 蛋白质组 焊剂(冶金) 生物化学 化学 生物 细胞生物学 计算生物学 新陈代谢 基因 有机化学
作者
Xin Chen,Feiran Li,Xiaowei Li,Maximilian Otto,Yu Chen,Verena Siewers
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:88: 1-13 被引量:8
标识
DOI:10.1016/j.ymben.2024.11.010
摘要

Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BX1823发布了新的文献求助10
2秒前
ding应助明理的依柔采纳,获得10
2秒前
深情安青应助hvgjgfjhgjh采纳,获得10
3秒前
冬嘉发布了新的文献求助10
3秒前
lvlv发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
zjm发布了新的文献求助10
4秒前
潦草又潦倒完成签到,获得积分10
5秒前
WMR完成签到,获得积分10
7秒前
12591完成签到,获得积分20
9秒前
11秒前
一贰壹完成签到,获得积分10
13秒前
13秒前
14秒前
王震发布了新的文献求助30
14秒前
14秒前
15秒前
15秒前
BX1823完成签到,获得积分10
16秒前
16秒前
Samyung发布了新的文献求助10
18秒前
whiteball发布了新的文献求助10
18秒前
吴彦祖发布了新的文献求助10
20秒前
20秒前
nianshu完成签到 ,获得积分0
20秒前
量子星尘发布了新的文献求助10
21秒前
123完成签到,获得积分10
21秒前
爱月光完成签到,获得积分10
21秒前
王震完成签到,获得积分20
22秒前
852应助BX1823采纳,获得30
22秒前
hvgjgfjhgjh发布了新的文献求助10
22秒前
噼里啪啦完成签到 ,获得积分10
22秒前
23秒前
24秒前
25秒前
zgnb发布了新的文献求助10
26秒前
舍文华发布了新的文献求助30
26秒前
26秒前
whiteball完成签到,获得积分10
26秒前
乐乐应助明理的依柔采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428903
求助须知:如何正确求助?哪些是违规求助? 4542491
关于积分的说明 14180912
捐赠科研通 4460169
什么是DOI,文献DOI怎么找? 2445634
邀请新用户注册赠送积分活动 1436824
关于科研通互助平台的介绍 1414013