Model-assisted CRISPRi/a library screening reveals central carbon metabolic targets for enhanced recombinant protein production in yeast

酵母 下调和上调 合成生物学 酿酒酵母 代谢通量分析 代谢工程 蛋白质组 焊剂(冶金) 生物化学 化学 生物 细胞生物学 计算生物学 新陈代谢 基因 有机化学
作者
Xin Chen,Feiran Li,Xiaowei Li,Maximilian Otto,Yu Chen,Verena Siewers
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:88: 1-13 被引量:8
标识
DOI:10.1016/j.ymben.2024.11.010
摘要

Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHF发布了新的文献求助10
刚刚
lulujiang完成签到 ,获得积分10
刚刚
周于琳完成签到 ,获得积分10
刚刚
duoduo发布了新的文献求助20
刚刚
稚未完成签到,获得积分10
刚刚
茂飞发布了新的文献求助10
刚刚
刚刚
123PY完成签到,获得积分10
1秒前
完美世界应助sun采纳,获得10
1秒前
酷炫迎波完成签到,获得积分10
1秒前
DADing完成签到,获得积分10
1秒前
2秒前
小栗子完成签到,获得积分10
2秒前
想喝冰美完成签到,获得积分10
2秒前
自己完成签到,获得积分20
3秒前
爱科研的小多肉完成签到,获得积分10
3秒前
Z_Z完成签到,获得积分10
4秒前
科研通AI6应助啊哈采纳,获得10
4秒前
cann完成签到,获得积分10
4秒前
如果完成签到,获得积分10
4秒前
4秒前
5秒前
鸢尾不是板蓝根完成签到,获得积分10
5秒前
狂野世立完成签到,获得积分10
6秒前
Juanjuan完成签到,获得积分10
6秒前
陈陈完成签到,获得积分10
6秒前
Tail发布了新的文献求助20
6秒前
梦鱼完成签到,获得积分10
7秒前
7秒前
7秒前
长情青烟发布了新的文献求助10
7秒前
glycine完成签到,获得积分10
7秒前
7秒前
lee_someone完成签到,获得积分10
7秒前
qqqqqqqqqqqq完成签到,获得积分10
7秒前
Damy完成签到,获得积分10
7秒前
AndyHan630完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
脑洞疼应助拾一采纳,获得10
8秒前
在水一方应助RichieXU采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433116
求助须知:如何正确求助?哪些是违规求助? 4545620
关于积分的说明 14197160
捐赠科研通 4465227
什么是DOI,文献DOI怎么找? 2447494
邀请新用户注册赠送积分活动 1438664
关于科研通互助平台的介绍 1415645