Model-assisted CRISPRi/a library screening reveals central carbon metabolic targets for enhanced recombinant protein production in yeast

酵母 下调和上调 合成生物学 酿酒酵母 代谢通量分析 代谢工程 蛋白质组 焊剂(冶金) 生物化学 化学 生物 细胞生物学 计算生物学 新陈代谢 基因 有机化学
作者
Xin Chen,Feiran Li,Xiaowei Li,Maximilian Otto,Yu Chen,Verena Siewers
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:88: 1-13 被引量:8
标识
DOI:10.1016/j.ymben.2024.11.010
摘要

Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红桃EDC完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
lynn完成签到 ,获得积分10
2秒前
科研通AI6应助李李采纳,获得10
3秒前
领导范儿应助无私追命采纳,获得10
3秒前
屿顾完成签到,获得积分10
4秒前
iNk应助工位瘤子采纳,获得20
4秒前
维奈克拉应助欢喜如霜采纳,获得10
4秒前
森森森完成签到,获得积分20
4秒前
航1发布了新的文献求助10
5秒前
5秒前
kskdss发布了新的文献求助150
6秒前
寂寞的小乌龟完成签到,获得积分10
6秒前
6秒前
科研通AI6应助zzz采纳,获得10
6秒前
李颖完成签到,获得积分10
7秒前
8秒前
星辰大海应助inspirx采纳,获得30
8秒前
浮游应助邪恶银渐层采纳,获得10
9秒前
WZ发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
zzz完成签到,获得积分10
10秒前
10秒前
ccc完成签到,获得积分10
10秒前
GXX发布了新的文献求助10
11秒前
小药童应助太湖橘子采纳,获得30
11秒前
二二发布了新的文献求助10
11秒前
11秒前
11秒前
hengqian发布了新的文献求助10
11秒前
lj完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
li完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435258
求助须知:如何正确求助?哪些是违规求助? 4547383
关于积分的说明 14207992
捐赠科研通 4467551
什么是DOI,文献DOI怎么找? 2448594
邀请新用户注册赠送积分活动 1439513
关于科研通互助平台的介绍 1416193