Model-assisted CRISPRi/a library screening reveals central carbon metabolic targets for enhanced recombinant protein production in yeast

酵母 下调和上调 合成生物学 酿酒酵母 代谢通量分析 代谢工程 蛋白质组 焊剂(冶金) 生物化学 化学 生物 细胞生物学 计算生物学 新陈代谢 基因 有机化学
作者
Xin Chen,Feiran Li,Xiaowei Li,Maximilian Otto,Yu Chen,Verena Siewers
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:88: 1-13 被引量:8
标识
DOI:10.1016/j.ymben.2024.11.010
摘要

Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ray完成签到,获得积分10
1秒前
板栗完成签到,获得积分10
1秒前
泥鳅面完成签到,获得积分10
1秒前
欧大大完成签到,获得积分10
1秒前
彬彬完成签到 ,获得积分10
2秒前
2秒前
深情安青应助nn采纳,获得10
2秒前
2秒前
2秒前
阿龙完成签到,获得积分10
2秒前
我独舞完成签到 ,获得积分10
4秒前
花开富贵完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
大浪淘沙完成签到 ,获得积分10
4秒前
兴奋的豆腐乳完成签到,获得积分10
4秒前
太拗口哟完成签到,获得积分10
4秒前
诸青梦完成签到 ,获得积分10
4秒前
壮观雁开完成签到,获得积分10
5秒前
Zzk完成签到,获得积分10
5秒前
灰灰发布了新的文献求助10
5秒前
颜三问完成签到,获得积分20
5秒前
MiriamYu完成签到,获得积分10
6秒前
研友_LXdbaL完成签到,获得积分10
6秒前
Alvin发布了新的文献求助10
6秒前
秀丽的凡旋完成签到,获得积分10
6秒前
直率凝丝完成签到,获得积分10
6秒前
WeiMooo完成签到 ,获得积分10
7秒前
Rrrr_完成签到,获得积分10
7秒前
小蘑菇应助solar@2030采纳,获得10
7秒前
Jackson333发布了新的文献求助10
7秒前
科研通AI6应助学术甜菜采纳,获得10
7秒前
特大包包完成签到,获得积分10
7秒前
勤奋完成签到,获得积分10
8秒前
8秒前
在水一方应助老胖子采纳,获得10
8秒前
9秒前
peng完成签到 ,获得积分10
9秒前
隐形曼青应助颜三问采纳,获得10
10秒前
求知完成签到,获得积分10
10秒前
25689完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349