理论(学习稳定性)
数学
零(语言学)
控制理论(社会学)
时滞微分方程
横向性
差速器(机械装置)
稳定性理论
数学分析
拓扑(电路)
组合数学
微分方程
纯数学
离散数学
物理
计算机科学
非线性系统
控制(管理)
量子力学
热力学
哲学
语言学
机器学习
人工智能
作者
Yuki Hata,Hideaki Matsunaga
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:28 (9): 4910-4936
被引量:1
标识
DOI:10.3934/dcdsb.2023047
摘要
In this study, stability properties of a linear delay differential system $ x'(t) = -ax(t-\tau)-by(t) $, $ y'(t) = -cx(t)-dy(t-\tau) $ are considered, where $ a $, $ b $, $ c $, and $ d $ are real numbers and $ \tau>0 $. Some explicit necessary and sufficient conditions are presented for the zero solution of the system to be asymptotically stable. The results demonstrate that delay-dependent stability switches in the system can occur not only when $ bc<0 $ but also when $ a>0 $, $ b>0 $, $ c>0 $, and $ d>0 $. Some examples are provided to illustrate the delay-dependent stability switches. The proof technique is based on careful analysis of the existence and the transversality of characteristic roots on the imaginary axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI