材料科学
阴极
分离器(采油)
离子电导率
离子键合
锂(药物)
复合数
离子
限制
快离子导体
中子成像
中子
纳米技术
化学物理
核工程
化学工程
复合材料
物理化学
核物理学
热力学
电极
化学
物理
机械工程
电解质
医学
内分泌学
有机化学
工程类
作者
Robert Bradbury,Georg F. Dewald,Marvin A. Kraft,Tobias Arlt,Nikolay Kardjilov,Jürgen Janek,Ingo Manke,Wolfgang G. Zeier,Saneyuki Ohno
标识
DOI:10.1002/aenm.202203426
摘要
Abstract The exploitation of high‐capacity conversion‐type materials such as sulfur in solid‐state secondary batteries is a dream combination for achieving improved battery safety and high energy density in the push toward a sustainable future. However, the exact reason behind the low rate‐capability, bottlenecking further development of solid‐state lithium–sulfur batteries, has not yet been determined. Here, using neutron imaging, the spatial distribution of lithium during cell operation is directly visualized and it is shown that sluggish macroscopic ion transport within the composite cathode is rate‐limiting. Observing a reaction front propagating from the separator side toward the current collector confirms the detrimental influence of a low effective ionic conductivity. Furthermore, irreversibly concentrated lithium in the vicinity of the current collector, revealed via state‐of‐charge‐dependent tomography, highlights a hitherto‐overlooked loss mechanism triggered by sluggish effective ionic transport within a composite cathode. This discovery can be a cornerstone for future research on solid‐state batteries, irrespective of the type of active material.
科研通智能强力驱动
Strongly Powered by AbleSci AI