Recognition of Riding Feeling From EEG Based on Neural Network

计算机科学 特征提取 人工智能 过度拟合 脑电图 模式识别(心理学) 循环神经网络 预处理器 人工神经网络 特征(语言学) 语音识别 卷积神经网络 心理学 语言学 哲学 精神科
作者
Xianzhi Tang,Anqi Cheng,Bo Wang,Yongjia Xie
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8997-9008 被引量:2
标识
DOI:10.1109/jsen.2023.3256356
摘要

In order to identify the riding feeling in an autonomous vehicle through electroencephalogram (EEG), a recognition model based on multidimensional feature extraction and recurrent neural network (RNN) is proposed. After the effective training of the dataset, the system can realize the recognition of passengers' riding feelings through real-time acquisition of passengers' EEG signals and sending them into this recognition model. After preprocessing the collected raw EEG signals, we conducted an in- depth study of the preprocessed EEG data and proposed an algorithm to identify riding feeling from EEG signals. In order to improve the classification ability of RNN, a feature extraction method based on time segments is designed. Applying this method, multidimensional features with spatial, temporal, and frequency-domain features are obtained. The experimental results show that this feature extraction method can effectively suppress the overfitting of the RNN and improve the recognition ability of the network. Finally, the recognition of riding feeling is recognized through the RNN. Through the verification of the a dataset for emotion analysis using EEG, physiological and video signals (DEAP) dataset and the self-built dataset, the average recognition accuracy rate of 89.22% and 94.27% was obtained, respectively, which provides a feasible solution for the recognition of riding feeling based on physiological signals such as EEG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助年轻的听露采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
思源应助DIY101采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
盒子应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
桐桐应助栀初采纳,获得10
3秒前
3秒前
4秒前
5秒前
未来可期完成签到,获得积分10
6秒前
研友_nxGOmL完成签到,获得积分10
6秒前
7秒前
7秒前
韩安完成签到,获得积分10
8秒前
ay0085发布了新的文献求助10
9秒前
沉浸鱼发布了新的文献求助30
10秒前
一指流沙发布了新的文献求助10
10秒前
111发布了新的文献求助10
11秒前
顺其自然_666888完成签到 ,获得积分10
12秒前
孤舟寂发布了新的文献求助10
13秒前
15秒前
17秒前
zs完成签到 ,获得积分10
17秒前
优雅的行云应助111采纳,获得10
19秒前
yuhui发布了新的文献求助10
20秒前
李爱国应助pura卷卷采纳,获得10
20秒前
20秒前
专注的水壶完成签到 ,获得积分10
20秒前
lalala发布了新的文献求助10
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293141
求助须知:如何正确求助?哪些是违规求助? 2929333
关于积分的说明 8441192
捐赠科研通 2601418
什么是DOI,文献DOI怎么找? 1419864
科研通“疑难数据库(出版商)”最低求助积分说明 660432
邀请新用户注册赠送积分活动 643047