A general way to manipulate electrical conductivity of graphene

石墨烯 电导率 密度泛函理论 石墨烯纳米带 电阻率和电导率 电子迁移率 导电体 材料科学 工作职能 X射线吸收精细结构 氧化石墨烯纸 石墨烯泡沫 纳米技术 化学物理 光电子学 复合材料 化学 光谱学 计算化学 物理化学 物理 图层(电子) 量子力学
作者
Liqing Chen,Nian Li,Xinling Yu,Shudong Zhang,Cui Liu,Yanping Song,Zhao Li,Shuai Han,Wenbo Wang,Pengzhan Yang,Na Hong,Sarmad Ali,Zhenyang Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:462: 142139-142139 被引量:35
标识
DOI:10.1016/j.cej.2023.142139
摘要

Electrical conductivity of graphene is one of the most important factors to dominate its applications, which is much lower than conventional good conductors including cooper in spite of its excellent electron mobility, limited by its low carrier density. In this work, a general way to improve electrical conductivity of graphene is proposed via introducing Cu NPs, which are rich in free electrons, into the well-crystalized laser-induced graphene (LIG). The LIG/Cu composite films, with an average diameter of 10 nm of Cu NPs evenly dispersed, were prepared in a laser induction process. It is worth mentioning that the electrical conductivity of porous graphene composited with Cu NPs is increased up to 0.37 × 107 S m−1, which is 3000 times that of pure LIG. To make clear mechanism of this notable phenomenon, the fine structure of Cu-graphene interface is characterized by X-ray Absorption Fine Structure (XAFS) spectroscopy, based on which, Density Function Theory (DFT) calculations are further adopted to reveal the influence of interface structure on electrical conductivity. It is revealed that Cu NPs with surface oxidation state (Cu2+) are most conducive to forming stable bonds with graphene, which will facilitate the electrons transfer from Cu to graphene. As a result, high carrier density and mobility are simultaneously realized in the graphene film, which finally leads to significant electrical conductivity enhancement. The results are of great significance in manipulating electrical conductivity of graphene with respect to various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助朱一龙采纳,获得30
1秒前
SharonDu完成签到 ,获得积分10
2秒前
ayin完成签到,获得积分10
2秒前
3秒前
3秒前
啦啦啦完成签到,获得积分10
3秒前
coffee发布了新的文献求助10
4秒前
4秒前
科研混子发布了新的文献求助10
4秒前
咿咿呀呀发布了新的文献求助10
4秒前
酷酷碧发布了新的文献求助10
6秒前
飘逸宛丝完成签到,获得积分10
7秒前
qzaima发布了新的文献求助10
7秒前
米酒完成签到,获得积分10
9秒前
step_stone给step_stone的求助进行了留言
9秒前
乐乐应助ayin采纳,获得10
10秒前
无花果应助hhh采纳,获得10
12秒前
叁壹粑粑完成签到,获得积分10
13秒前
酷酷碧完成签到,获得积分10
13秒前
14秒前
磕盐民工完成签到,获得积分10
15秒前
15秒前
忘羡222发布了新的文献求助20
15秒前
我是老大应助TT采纳,获得10
17秒前
17秒前
17秒前
雪鸽鸽完成签到,获得积分10
18秒前
完美世界应助开心青旋采纳,获得10
18秒前
LD完成签到 ,获得积分10
20秒前
xjy完成签到 ,获得积分10
20秒前
qzaima完成签到,获得积分10
20秒前
21秒前
xueshufengbujue完成签到,获得积分10
21秒前
楼寒天发布了新的文献求助10
21秒前
22秒前
科研通AI5应助111111111采纳,获得10
23秒前
23秒前
sunsunsun完成签到,获得积分10
23秒前
哎嘤斯坦完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824