Optimizing Large Language Models in Radiology and Mitigating Pitfalls: Prompt Engineering and Fine-tuning

医学 医学物理学 放射科 重症监护医学
作者
T. Kim,Michael Makutonin,Reza Sirous,Ramin Javan
出处
期刊:Radiographics [Radiological Society of North America]
卷期号:45 (4)
标识
DOI:10.1148/rg.240073
摘要

Large language models (LLMs) such as generative pretrained transformers (GPTs) have had a major impact on society, and there is increasing interest in using these models for applications in medicine and radiology. This article presents techniques to optimize these models and describes their known challenges and limitations. Specifically, the authors explore how to best craft natural language prompts, a process known as prompt engineering, for these models to elicit more accurate and desirable responses. The authors also explain how fine-tuning is conducted, in which a more general model, such as GPT-4, is further trained on a more specific use case, such as summarizing clinical notes, to further improve reliability and relevance. Despite the enormous potential of these models, substantial challenges limit their widespread implementation. These tools differ substantially from traditional health technology in their complexity and their probabilistic and nondeterministic nature, and these differences lead to issues such as "hallucinations," biases, lack of reliability, and security risks. Therefore, the authors provide radiologists with baseline knowledge of the technology underpinning these models and an understanding of how to use them, in addition to exploring best practices in prompt engineering and fine-tuning. Also discussed are current proof-of-concept use cases of LLMs in the radiology literature, such as in clinical decision support and report generation, and the limitations preventing their current adoption in medicine and radiology. ©RSNA, 2025 See invited commentary by Chung and Mongan in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇气的妙之完成签到,获得积分10
刚刚
勤恳的一斩完成签到,获得积分10
1秒前
爆米花应助ZM采纳,获得10
1秒前
左旋多巴完成签到,获得积分10
1秒前
香蕉觅云应助喂喂喂威采纳,获得10
3秒前
CBY发布了新的文献求助10
4秒前
BIN发布了新的文献求助10
5秒前
搜集达人应助阿智采纳,获得30
5秒前
科研小牛发布了新的文献求助10
5秒前
Metx完成签到 ,获得积分10
6秒前
小马甲应助cc采纳,获得10
6秒前
靓丽念薇完成签到,获得积分10
6秒前
健忘的黑猫完成签到,获得积分20
7秒前
8秒前
隐形曼青应助hhh采纳,获得30
8秒前
8秒前
情怀应助Simone采纳,获得10
9秒前
Lucas应助金鱼采纳,获得10
9秒前
11秒前
狂野东蒽发布了新的文献求助10
11秒前
11秒前
ZM完成签到,获得积分10
11秒前
搜集达人应助史鹏忠采纳,获得10
12秒前
Maomao发布了新的文献求助10
13秒前
香蕉觅云应助chenyy采纳,获得10
14秒前
淡然羿完成签到 ,获得积分10
14秒前
14秒前
小杨完成签到 ,获得积分10
14秒前
耶斯完成签到,获得积分20
15秒前
欣慰碧琴完成签到,获得积分10
16秒前
英姑应助森距离采纳,获得10
17秒前
Orange应助LJL采纳,获得10
17秒前
ZM发布了新的文献求助10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
Too关闭了Too文献求助
18秒前
吴大打应助科研通管家采纳,获得10
18秒前
yuchen应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
19秒前
xin应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772499
求助须知:如何正确求助?哪些是违规求助? 3317979
关于积分的说明 10188385
捐赠科研通 3032977
什么是DOI,文献DOI怎么找? 1663887
邀请新用户注册赠送积分活动 796011
科研通“疑难数据库(出版商)”最低求助积分说明 757108