Epistasis-mediated compensatory evolution in a fitness landscape with adaptational tradeoffs

上位性 健身景观 多效性 遗传适应性 生物 抗性(生态学) 适应(眼睛) 进化生物学 遗传学 实验进化 突变 局部适应 表型 生态学 生物进化 人口 基因 神经科学 人口学 社会学
作者
Suman G. Das,Muhittin Mungan,Joachim Krug
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (15)
标识
DOI:10.1073/pnas.2422520122
摘要

The evolutionary adaptation of an organism to a stressful environment often comes at the cost of reduced fitness. For example, resistance to antimicrobial drugs frequently reduces growth rate in the drug-free environment. This cost can be compensated without loss in resistance by mutations at secondary sites when the organism evolves again in the stress-free environment. Here, we analytically and numerically study evolution on a simple model fitness landscape to show that compensatory evolution can occur even in the presence of the stress and without the need for mutations at secondary sites. Fitness in the model depends on two phenotypes—the null-fitness defined as the fitness in the absence of stress, and the resistance level to the stress. Mutations universally exhibit antagonistic pleiotropy between the two phenotypes, that is they increase resistance while decreasing the null-fitness. Initial adaptation in this model occurs in a smooth region of the landscape with a rapid accumulation of stress resistance mutations and a concurrent decrease in the null-fitness. This is followed by a second, slower phase exhibiting partial recovery of the null-fitness. The second phase occurs on the rugged part of the landscape and involves the exchange of high-cost resistance mutations for low-cost ones. This process, which we call exchange compensation, is the result of changing epistatic interactions in the genotype as evolution progresses. The model provides general lessons about the tempo and mode of evolution under universal antagonistic pleiotropy with specific implications for drug resistance evolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joker_k应助甜心院士采纳,获得20
刚刚
刘豆豆完成签到,获得积分10
1秒前
yu发布了新的文献求助10
2秒前
splemeth完成签到,获得积分10
4秒前
5秒前
劲秉应助负责的方盒采纳,获得10
5秒前
6秒前
Jasper应助gghoubj采纳,获得10
10秒前
扬嘉諵发布了新的文献求助10
13秒前
科研通AI5应助张茜采纳,获得10
18秒前
Hello应助郑雪红采纳,获得10
19秒前
小鹿完成签到,获得积分10
21秒前
21秒前
zhoahai完成签到 ,获得积分10
22秒前
劲秉应助喜气洋洋采纳,获得10
23秒前
12345完成签到,获得积分10
24秒前
24秒前
吟风听且gnis完成签到,获得积分10
24秒前
gghoubj完成签到,获得积分10
25秒前
伶俐问薇完成签到,获得积分10
25秒前
香蕉觅云应助H221采纳,获得10
26秒前
zhouyanqi完成签到,获得积分20
28秒前
乐乐应助科研通管家采纳,获得10
28秒前
今后应助科研通管家采纳,获得30
28秒前
田様应助科研通管家采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得20
28秒前
cdercder应助科研通管家采纳,获得20
28秒前
所所应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
29秒前
温婉的靖儿完成签到,获得积分10
30秒前
30秒前
rainbow完成签到,获得积分10
30秒前
打打应助优秀绮彤采纳,获得10
35秒前
缓慢太君发布了新的文献求助10
36秒前
着急的傲菡完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727987
求助须知:如何正确求助?哪些是违规求助? 3273063
关于积分的说明 9979754
捐赠科研通 2988453
什么是DOI,文献DOI怎么找? 1639640
邀请新用户注册赠送积分活动 778825
科研通“疑难数据库(出版商)”最低求助积分说明 747819