Molecular Mechanisms of Dietary Bioactive Peptides in Treating Alzheimer’s Disease and Mild Cognitive Impairment by Network Pharmacology and Molecular Docking Analysis

认知障碍 疾病 药理学 阿尔茨海默病 神经科学 医学 认知 心理学 内科学
作者
Ruirui Li,Jing Zi,Y. Hu,Xinglong Li,Qianqian Cao,Yu Li,Xiaoyu Wang,Jingyuan Xiong,Guo Cheng
出处
期刊:Rejuvenation Research [Mary Ann Liebert]
标识
DOI:10.1089/rej.2024.0092
摘要

Emerging evidence suggests that bioactive peptides from various foods have therapeutic potentials in improving cognitive function in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We aimed to explore the characteristics of these peptides and their mechanisms on AD/MCI using a network pharmacology approach. We compiled a dataset of cognition-enhancing peptides from literatures and identified shared targets between these peptides and AD/MCI using Swiss Target Predication, PharmMapper, OMIM, GeneCards, TTD, and Drugbank databases. We then performed functional enrichment analysis and constructed a gene–gene interaction network to identify key hub targets. Additionally, we investigated the transcription factors (TFs) and microRNAs (miRNAs) regulating these hub genes. Molecular docking and dynamic simulations were performed using AutoDock Vina and GROMACS. We identified 59 cognition-enhancing oligopeptides, typically short and rich in arginine. These peptides were predicted to interact with 222 potential targets relevant to AD/MCI, with functional pathways mainly involving neuroactive ligand-receptor interactions and inflammation. We identified 15 hub targets, regulated by 144 TFs and 95 miRNAs. Notably, peptides containing the "Trp-Tyr" sequence demonstrated strong binding affinities to many hub targets, especially matrix metalloproteinase-9. The findings provided valuable insights into the molecular mechanisms through which bioactive peptides may act against AD/MCI and highlight the potential of network pharmacology for future exploration of bioactive peptides from natural foods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxh完成签到 ,获得积分10
1秒前
wqk完成签到,获得积分10
1秒前
gugugu发布了新的文献求助10
1秒前
sqw完成签到,获得积分10
2秒前
2秒前
adeno发布了新的文献求助10
3秒前
Hancock完成签到 ,获得积分10
3秒前
细心故事应助空曲采纳,获得10
3秒前
斯文的天奇完成签到 ,获得积分10
4秒前
4秒前
kjh发布了新的文献求助30
6秒前
shuangyanli完成签到,获得积分10
7秒前
暮寻屿苗完成签到 ,获得积分10
8秒前
adeno完成签到,获得积分10
8秒前
林先生完成签到,获得积分10
8秒前
9秒前
bigpluto完成签到,获得积分10
9秒前
章鱼完成签到,获得积分10
10秒前
10秒前
Abi完成签到,获得积分10
11秒前
英姑应助善良的导师采纳,获得10
12秒前
FrancisCho完成签到,获得积分0
13秒前
14秒前
hhhxmx发布了新的文献求助10
14秒前
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
三里墩头应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
龙玄泽应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Hello paper应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571483
求助须知:如何正确求助?哪些是违规求助? 3142021
关于积分的说明 9445454
捐赠科研通 2843551
什么是DOI,文献DOI怎么找? 1562864
邀请新用户注册赠送积分活动 731380
科研通“疑难数据库(出版商)”最低求助积分说明 718546