High densities of managed honeybees (Apis mellifera) can threaten wild bees through exploitative competition, thus leading to population declines of the latter. Although reviews have outlined key steps to demonstrate these impacts-measuring resource overlap, changes in wild bee behavior, and population trends-studies that comprehensively address these aspects are virtually absent. We were granted access to the entire protected island of Giannutri (2.6 km2) and to the apiary (18 hives) located there during the early phase of coexistence between honeybees and wild bees. Using the island as an open-air laboratory, we experimentally manipulated honeybee pressure by closing the hives on selected days during the peak of the wild bee foraging period. In the plants most visited by pollinators, even short-term honeybee removals (11 h per day) increased nectar volume (∼60%) and pollen availability (∼30%). In the absence of honeybees, target wild bees (Anthophora dispar and Bombus terrestris) became dominant in the insect-plant visitation network, and the potential apparent competition significantly decreased. Accordingly, both species intensified their foraging activity and increased nectar suction time, a recognized proxy for the quantity of probed nectar, and Bombus terrestris also shortened the time of pollen searching. Transect monitoring revealed an alarming ∼80% decline in both species over 4 years, consistent with honeybee monopolization of floral resources, thus reducing availability for wild pollinators and altering their foraging budget. These findings underscore the risks of introducing high densities of honeybees into protected areas and emphasize the need for rigorous preventive ecological assessments.