Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models

计算机科学 人口 代理(统计) 计量经济学 机器学习 特征(语言学) 离群值 决策树 人工智能 数据挖掘 数学 语言学 哲学 社会学 人口学
作者
Songhua Hu,Chenfeng Xiong,Peng Chen,Paul Schonfeld
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier]
卷期号:174: 103743-103743 被引量:19
标识
DOI:10.1016/j.tra.2023.103743
摘要

Mobile device location data (MDLD) contain population-representative, fine-grained travel demand information, facilitating opportunities to validate established relations between travel demand and underlying factors from a big data perspective. Using the nationwide census block group (CBG)-level population inflow derived from MDLD as the proxy of travel demand, this study examines its relations with various factors including socioeconomics, demographics, land use, and CBG attributes. A host of tree-based machine learning (ML) models and interpretation techniques (feature importance, partial dependence plot (PDP), accumulated local effect (ALE), SHapley Additive exPlanations (SHAP)) are extensively compared to determine the best model architecture and justify interpretation robustness. Empirical results show that: 1) Boosting trees perform the best among all models, followed by bagging trees, single trees, and linear regressions. (2) Feature importance holds consistently among different tree-based models but is influenced by measures of importance and hyperparameter settings. 3) Pronounced nonlinearities, threshold effects, and interaction effects are observed in relations among population inflow and most of its determinants. 4) Compared with PDP, ALE and SHAP plots are more reliable in the presence of outliers, feature dependency, and local heterogeneity. Taken together, techniques introduced in this study can either be integrated into customary travel demand models to enhance model accuracy or serve as interpretation tools that offer a comprehensive understanding of intricate relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助xiejuan采纳,获得10
1秒前
2秒前
2秒前
4秒前
大个应助精炼猫薄荷采纳,获得10
4秒前
乐乐应助LARS采纳,获得10
5秒前
6秒前
Renee应助DRYAN采纳,获得10
7秒前
7秒前
万信心发布了新的文献求助10
7秒前
8秒前
8秒前
asd发布了新的文献求助10
10秒前
小只发布了新的文献求助10
12秒前
赘婿应助yydsyk采纳,获得10
13秒前
wangafa完成签到,获得积分10
14秒前
miao发布了新的文献求助10
16秒前
彭于晏应助美满广缘采纳,获得10
17秒前
善学以致用应助加肥猫1992采纳,获得10
19秒前
李爱国应助顺心寻菡采纳,获得10
20秒前
Akim应助权志龙采纳,获得10
20秒前
隐形曼青应助活泼的不可采纳,获得10
20秒前
bunny发布了新的文献求助10
21秒前
zzz完成签到,获得积分20
21秒前
yunchen发布了新的文献求助10
21秒前
寒冷荧荧应助fifteen采纳,获得10
21秒前
王螺丝发布了新的文献求助10
22秒前
打打应助诸觅双采纳,获得10
23秒前
Orange应助受伤的新晴采纳,获得10
23秒前
标致溪流完成签到,获得积分10
23秒前
24秒前
科目三应助zzz采纳,获得30
25秒前
edsenone发布了新的文献求助10
27秒前
27秒前
kingwhitewing发布了新的文献求助50
27秒前
韭菜发布了新的文献求助10
28秒前
美满广缘完成签到,获得积分20
29秒前
子民驳回了慕青应助
29秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160952
求助须知:如何正确求助?哪些是违规求助? 2812175
关于积分的说明 7894698
捐赠科研通 2471057
什么是DOI,文献DOI怎么找? 1315853
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068