亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models

计算机科学 人口 代理(统计) 计量经济学 机器学习 特征(语言学) 离群值 决策树 人工智能 数据挖掘 数学 语言学 哲学 社会学 人口学
作者
Songhua Hu,Chenfeng Xiong,Peng Chen,Paul Schonfeld
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier]
卷期号:174: 103743-103743 被引量:19
标识
DOI:10.1016/j.tra.2023.103743
摘要

Mobile device location data (MDLD) contain population-representative, fine-grained travel demand information, facilitating opportunities to validate established relations between travel demand and underlying factors from a big data perspective. Using the nationwide census block group (CBG)-level population inflow derived from MDLD as the proxy of travel demand, this study examines its relations with various factors including socioeconomics, demographics, land use, and CBG attributes. A host of tree-based machine learning (ML) models and interpretation techniques (feature importance, partial dependence plot (PDP), accumulated local effect (ALE), SHapley Additive exPlanations (SHAP)) are extensively compared to determine the best model architecture and justify interpretation robustness. Empirical results show that: 1) Boosting trees perform the best among all models, followed by bagging trees, single trees, and linear regressions. (2) Feature importance holds consistently among different tree-based models but is influenced by measures of importance and hyperparameter settings. 3) Pronounced nonlinearities, threshold effects, and interaction effects are observed in relations among population inflow and most of its determinants. 4) Compared with PDP, ALE and SHAP plots are more reliable in the presence of outliers, feature dependency, and local heterogeneity. Taken together, techniques introduced in this study can either be integrated into customary travel demand models to enhance model accuracy or serve as interpretation tools that offer a comprehensive understanding of intricate relations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NEUROVASCULAR发布了新的文献求助10
1秒前
1秒前
3秒前
隐形曼青应助lld采纳,获得10
3秒前
5秒前
善善完成签到 ,获得积分10
5秒前
5秒前
6秒前
kk发布了新的文献求助10
8秒前
14秒前
倒逆之蝶发布了新的文献求助10
16秒前
老实的怀蕊完成签到,获得积分10
18秒前
29秒前
35秒前
42秒前
43秒前
46秒前
李爱国应助哈哈哈哈采纳,获得10
48秒前
Weilu完成签到 ,获得积分10
49秒前
小妖发布了新的文献求助10
49秒前
52秒前
54秒前
才疏学浅完成签到,获得积分20
55秒前
PPD发布了新的文献求助10
1分钟前
1分钟前
Lz555完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zly完成签到 ,获得积分0
1分钟前
1分钟前
小蓝发布了新的文献求助30
1分钟前
1分钟前
倒逆之蝶发布了新的文献求助10
1分钟前
跳跃毒娘发布了新的文献求助10
1分钟前
1分钟前
欢欢完成签到,获得积分20
1分钟前
领导范儿应助独特的鹅采纳,获得10
1分钟前
欢欢发布了新的文献求助10
1分钟前
yuqian发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664093
求助须知:如何正确求助?哪些是违规求助? 4857445
关于积分的说明 15107133
捐赠科研通 4822538
什么是DOI,文献DOI怎么找? 2581527
邀请新用户注册赠送积分活动 1535744
关于科研通互助平台的介绍 1493963