Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models

计算机科学 人口 代理(统计) 计量经济学 机器学习 特征(语言学) 离群值 决策树 人工智能 数据挖掘 数学 人口学 社会学 语言学 哲学
作者
Songhua Hu,Chenfeng Xiong,Peng Chen,Paul Schonfeld
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier BV]
卷期号:174: 103743-103743 被引量:19
标识
DOI:10.1016/j.tra.2023.103743
摘要

Mobile device location data (MDLD) contain population-representative, fine-grained travel demand information, facilitating opportunities to validate established relations between travel demand and underlying factors from a big data perspective. Using the nationwide census block group (CBG)-level population inflow derived from MDLD as the proxy of travel demand, this study examines its relations with various factors including socioeconomics, demographics, land use, and CBG attributes. A host of tree-based machine learning (ML) models and interpretation techniques (feature importance, partial dependence plot (PDP), accumulated local effect (ALE), SHapley Additive exPlanations (SHAP)) are extensively compared to determine the best model architecture and justify interpretation robustness. Empirical results show that: 1) Boosting trees perform the best among all models, followed by bagging trees, single trees, and linear regressions. (2) Feature importance holds consistently among different tree-based models but is influenced by measures of importance and hyperparameter settings. 3) Pronounced nonlinearities, threshold effects, and interaction effects are observed in relations among population inflow and most of its determinants. 4) Compared with PDP, ALE and SHAP plots are more reliable in the presence of outliers, feature dependency, and local heterogeneity. Taken together, techniques introduced in this study can either be integrated into customary travel demand models to enhance model accuracy or serve as interpretation tools that offer a comprehensive understanding of intricate relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习爱我完成签到,获得积分10
1秒前
欢喜小霸王完成签到 ,获得积分10
2秒前
111发布了新的文献求助10
2秒前
学习通完成签到,获得积分10
3秒前
4秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
婷婷发布了新的文献求助10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
CCL应助科研通管家采纳,获得60
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
海皇星空发布了新的文献求助10
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
cc完成签到,获得积分10
7秒前
xiaobai发布了新的文献求助10
8秒前
刘济源完成签到,获得积分10
9秒前
科研通AI5应助sptyzl采纳,获得10
12秒前
13秒前
13秒前
14秒前
娃哈哈发布了新的文献求助10
15秒前
15秒前
wuxunxun2015发布了新的文献求助10
16秒前
16秒前
缥缈的青旋完成签到,获得积分10
17秒前
17秒前
包容的香菱完成签到,获得积分20
17秒前
20秒前
粗心的chen发布了新的文献求助10
20秒前
mimi完成签到,获得积分10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761895
求助须知:如何正确求助?哪些是违规求助? 3305631
关于积分的说明 10135016
捐赠科研通 3019709
什么是DOI,文献DOI怎么找? 1658368
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754766