亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models

计算机科学 人口 代理(统计) 计量经济学 机器学习 特征(语言学) 离群值 决策树 人工智能 数据挖掘 数学 语言学 哲学 社会学 人口学
作者
Songhua Hu,Chenfeng Xiong,Peng Chen,Paul Schonfeld
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier]
卷期号:174: 103743-103743 被引量:19
标识
DOI:10.1016/j.tra.2023.103743
摘要

Mobile device location data (MDLD) contain population-representative, fine-grained travel demand information, facilitating opportunities to validate established relations between travel demand and underlying factors from a big data perspective. Using the nationwide census block group (CBG)-level population inflow derived from MDLD as the proxy of travel demand, this study examines its relations with various factors including socioeconomics, demographics, land use, and CBG attributes. A host of tree-based machine learning (ML) models and interpretation techniques (feature importance, partial dependence plot (PDP), accumulated local effect (ALE), SHapley Additive exPlanations (SHAP)) are extensively compared to determine the best model architecture and justify interpretation robustness. Empirical results show that: 1) Boosting trees perform the best among all models, followed by bagging trees, single trees, and linear regressions. (2) Feature importance holds consistently among different tree-based models but is influenced by measures of importance and hyperparameter settings. 3) Pronounced nonlinearities, threshold effects, and interaction effects are observed in relations among population inflow and most of its determinants. 4) Compared with PDP, ALE and SHAP plots are more reliable in the presence of outliers, feature dependency, and local heterogeneity. Taken together, techniques introduced in this study can either be integrated into customary travel demand models to enhance model accuracy or serve as interpretation tools that offer a comprehensive understanding of intricate relations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张贵虎发布了新的文献求助10
刚刚
爆米花应助wise111采纳,获得10
2秒前
YY完成签到,获得积分20
4秒前
7秒前
8秒前
李健的粉丝团团长应助YY采纳,获得10
8秒前
9秒前
12秒前
15秒前
快了科研发布了新的文献求助30
18秒前
yuuan完成签到,获得积分10
23秒前
26秒前
28秒前
快了科研完成签到,获得积分10
28秒前
30秒前
酷波er应助吴逸彪采纳,获得10
33秒前
英姑应助炙心采纳,获得10
36秒前
40秒前
41秒前
44秒前
吴逸彪发布了新的文献求助10
45秒前
mmh发布了新的文献求助10
45秒前
46秒前
49秒前
坚强煜城发布了新的文献求助10
50秒前
炙心发布了新的文献求助10
53秒前
wise111发布了新的文献求助10
53秒前
54秒前
Ava应助吴逸彪采纳,获得10
55秒前
Huayan发布了新的文献求助30
59秒前
1分钟前
吴逸彪完成签到,获得积分10
1分钟前
charm完成签到,获得积分10
1分钟前
吴逸彪发布了新的文献求助10
1分钟前
柳贯一完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
YY发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509398
求助须知:如何正确求助?哪些是违规求助? 4604318
关于积分的说明 14489605
捐赠科研通 4539084
什么是DOI,文献DOI怎么找? 2487285
邀请新用户注册赠送积分活动 1469726
关于科研通互助平台的介绍 1441944