Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models

计算机科学 人口 代理(统计) 计量经济学 机器学习 特征(语言学) 离群值 决策树 人工智能 数据挖掘 数学 语言学 哲学 社会学 人口学
作者
Songhua Hu,Chenfeng Xiong,Peng Chen,Paul Schonfeld
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier BV]
卷期号:174: 103743-103743 被引量:19
标识
DOI:10.1016/j.tra.2023.103743
摘要

Mobile device location data (MDLD) contain population-representative, fine-grained travel demand information, facilitating opportunities to validate established relations between travel demand and underlying factors from a big data perspective. Using the nationwide census block group (CBG)-level population inflow derived from MDLD as the proxy of travel demand, this study examines its relations with various factors including socioeconomics, demographics, land use, and CBG attributes. A host of tree-based machine learning (ML) models and interpretation techniques (feature importance, partial dependence plot (PDP), accumulated local effect (ALE), SHapley Additive exPlanations (SHAP)) are extensively compared to determine the best model architecture and justify interpretation robustness. Empirical results show that: 1) Boosting trees perform the best among all models, followed by bagging trees, single trees, and linear regressions. (2) Feature importance holds consistently among different tree-based models but is influenced by measures of importance and hyperparameter settings. 3) Pronounced nonlinearities, threshold effects, and interaction effects are observed in relations among population inflow and most of its determinants. 4) Compared with PDP, ALE and SHAP plots are more reliable in the presence of outliers, feature dependency, and local heterogeneity. Taken together, techniques introduced in this study can either be integrated into customary travel demand models to enhance model accuracy or serve as interpretation tools that offer a comprehensive understanding of intricate relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
569402865关注了科研通微信公众号
刚刚
willa完成签到 ,获得积分10
刚刚
MichaelQin完成签到,获得积分10
2秒前
汉堡包应助Logan采纳,获得10
2秒前
逃跑的想表白的你猜完成签到,获得积分10
2秒前
TT完成签到,获得积分20
3秒前
4秒前
5秒前
LOT完成签到,获得积分10
5秒前
5秒前
6秒前
翊然甜周完成签到,获得积分10
7秒前
Key完成签到,获得积分20
7秒前
zhuxiaonian完成签到,获得积分10
7秒前
时闲应助诚心的傲芙采纳,获得10
7秒前
XZZH完成签到,获得积分10
7秒前
8秒前
cl完成签到,获得积分10
8秒前
归尘应助ysq采纳,获得10
8秒前
8秒前
巴旦木完成签到,获得积分10
9秒前
度度发布了新的文献求助10
9秒前
打打应助cjh采纳,获得10
9秒前
辛子发布了新的文献求助10
9秒前
呆呆鼠完成签到,获得积分20
9秒前
11关闭了11文献求助
10秒前
呆萌藏鸟完成签到,获得积分10
10秒前
solar@2030发布了新的文献求助10
11秒前
11秒前
小二郎应助welldone采纳,获得10
12秒前
孤独的大灰狼完成签到 ,获得积分10
12秒前
qiyun完成签到,获得积分10
12秒前
13秒前
orixero应助归海一刀采纳,获得10
13秒前
caowen完成签到 ,获得积分10
13秒前
orixero应助科研小白采纳,获得10
14秒前
新威宝贝完成签到,获得积分10
14秒前
简单的白云完成签到,获得积分10
14秒前
成玉完成签到 ,获得积分10
14秒前
子星发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128