MFFNet: Multi-Modal Feature Fusion Network for V-D-T Salient Object Detection

计算机科学 人工智能 串联(数学) 情态动词 特征(语言学) 模式识别(心理学) 突出 编码器 融合 计算机视觉 数学 语言学 化学 哲学 组合数学 高分子化学 操作系统
作者
Bin Wan,Xiaofei Zhou,Yaoqi Sun,Tingyu Wang,Chengtao Lv,Shuai Wang,Haibing Yin,Chenggang Yan
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2069-2081 被引量:7
标识
DOI:10.1109/tmm.2023.3291823
摘要

This article discusses the limitations of single- and two-modal salient object detection (SOD) methods and the emergence of multi-modal SOD techniques that integrate Visible, Depth, or Thermal information. However, current multi-modal methods often rely on simple fusion techniques such as addition, multiplication and concatenation, to combine the different modalities, which is ineffective for challenging scenes, such as low illumination and background messy. To address this issue, we propose a novel multi-modal feature fusion network (MFFNet) for V-D-T salient object detection, where the two key points are the triple-modal deep fusion encoder and the progressive feature enhancement decoder. The MFFNet's triple-modal deep fusion (TDF) module is designed to integrate the features of the three modalities and explore their complementarity by utilizing mutual optimization during the encoding phase. In addition, the progressive feature enhancement decoder consists of the weighted context-enhanced feature (WCF) module, region optimization (RO) module and boundary perception (BP) module to produce region-aware and contour-aware features. After that, a multi-scale fusion (MF) module is proposed to integrate these features and generate high-quality saliency maps. We conduct extensive experiments on the VDT-2048 dataset, and our results show that the proposed MFFNet outperforms 12 state-of-the-art multi-modal methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得30
刚刚
大个应助科研通管家采纳,获得10
1秒前
SUS完成签到,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研小秦完成签到,获得积分10
1秒前
所所应助小时候采纳,获得10
2秒前
yy完成签到,获得积分10
3秒前
大个应助北粥采纳,获得10
3秒前
SUS发布了新的文献求助10
3秒前
5秒前
JamesTYD发布了新的文献求助10
6秒前
sun448526关注了科研通微信公众号
6秒前
6秒前
耶嘿完成签到,获得积分10
6秒前
li发布了新的文献求助10
7秒前
daidai完成签到,获得积分10
8秒前
Akim应助snowskating采纳,获得10
8秒前
ss关闭了ss文献求助
9秒前
科研通AI5应助Llt采纳,获得10
10秒前
早睡早起身体好完成签到,获得积分10
10秒前
锅锅发布了新的文献求助30
11秒前
简让发布了新的文献求助10
11秒前
Orange应助乐观的雅青采纳,获得50
11秒前
12秒前
帅气的听白完成签到 ,获得积分10
12秒前
Aries完成签到 ,获得积分10
13秒前
科研通AI5应助bear采纳,获得10
14秒前
北风北风完成签到,获得积分10
14秒前
14秒前
斯文败类应助苹果千秋采纳,获得10
15秒前
juan完成签到,获得积分10
15秒前
16秒前
17秒前
欢呼的鲂完成签到,获得积分10
18秒前
18秒前
北风北风发布了新的文献求助20
19秒前
yangz10完成签到 ,获得积分10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763170
求助须知:如何正确求助?哪些是违规求助? 3307728
关于积分的说明 10141101
捐赠科研通 3022752
什么是DOI,文献DOI怎么找? 1659311
邀请新用户注册赠送积分活动 792510
科研通“疑难数据库(出版商)”最低求助积分说明 754982