A Coupled Temporal–Spectral–Spatial Multidimensional Information Change Detection Framework Method: A Case of the 1990–2020 Tianjin, China

变更检测 计算机科学 土地覆盖 动态时间归整 模式识别(心理学) 数据挖掘 遥感 人工智能 地理 土地利用 土木工程 工程类
作者
Linye Zhu,Zheng Guo,Huaqiao Xing,Wenbin Sun
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 5741-5758 被引量:7
标识
DOI:10.1109/jstars.2023.3288218
摘要

Satellite image time series change detection methods have become an effective means of obtaining information on land cover change. However, the temporal, spectral and spatial features and their derived features of land cover objects are of great importance for time series change detection. Existing studies have made insufficient use of these features, which may affect the results of land cover change detection. In order to fully integrate the above features to portray and represent change information, this study proposes a coupled temporal-spectral-spatial multidimensional information change detection framework (TSSF) method. Firstly, the derived index features are calculated to construct intra-annual temporal-spectral information to reduce the underutilization of spectral features. Secondly, the intra-annual temporal spectral information is extended to the spatio-temporal domain by the simple non-iterative clustering (SNIC) method and the SG filtering method to increase the exploitation of spatial features. Then, the value and shape based dynamic time warping method and the change vector analysis in posterior probability space (CVAPS) method are employed to obtain change information from the spectral, index, and class probability perspectives. Finally, the change type in the change region is obtained from the class probability information of the change magnitude according to the Bayesian criterion. Tianjin City was used as the study area to explore the land cover change from 1990 to 2020. The results show that the TSSF method is feasible in expressing temporal-spectral-spatial change information compared with existing methods, and is conducive to the efficient acquisition and identification of change areas and change types.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖蛋蛋蛋发布了新的文献求助10
刚刚
2秒前
3秒前
tclouds完成签到 ,获得积分10
3秒前
HAHA发布了新的文献求助10
4秒前
11发布了新的文献求助10
7秒前
0923发布了新的文献求助10
9秒前
13秒前
儒雅的不愁完成签到 ,获得积分10
14秒前
14秒前
科研通AI2S应助yuzaidididi采纳,获得10
15秒前
16秒前
一颗糖完成签到 ,获得积分10
17秒前
zoes发布了新的文献求助10
18秒前
幸运的果子狸完成签到,获得积分10
18秒前
zm完成签到,获得积分10
20秒前
小刘小刘发布了新的文献求助10
21秒前
21秒前
所所应助LLL采纳,获得10
22秒前
无极微光应助zoes采纳,获得20
23秒前
乐乐应助wuyanan513采纳,获得10
24秒前
sskr完成签到,获得积分10
24秒前
科研通AI6.1应助芝麻开花采纳,获得10
25秒前
GXY完成签到 ,获得积分10
26秒前
Akim应助小刘小刘采纳,获得10
26秒前
27秒前
18318933768完成签到,获得积分10
27秒前
0923完成签到,获得积分10
28秒前
南雪既白完成签到,获得积分10
28秒前
小慧儿完成签到 ,获得积分10
28秒前
CipherSage应助科研通管家采纳,获得10
30秒前
30秒前
田様应助刘玄德采纳,获得10
32秒前
老福贵儿应助牧青采纳,获得10
32秒前
PennySun完成签到,获得积分10
33秒前
高天雨完成签到 ,获得积分10
34秒前
LLL发布了新的文献求助10
36秒前
烟花应助太叔文博采纳,获得10
37秒前
烟花应助齐欣采纳,获得10
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868166
求助须知:如何正确求助?哪些是违规求助? 6438782
关于积分的说明 15657843
捐赠科研通 4983526
什么是DOI,文献DOI怎么找? 2687517
邀请新用户注册赠送积分活动 1630201
关于科研通互助平台的介绍 1588271