A depth map fusion algorithm with improved efficiency considering pixel region prediction

像素 融合 计算机科学 比例(比率) 人工智能 算法 合并(版本控制) 图像融合 点云 点(几何) 计算机视觉 图像(数学) 模式识别(心理学) 数学 几何学 地理 哲学 语言学 地图学 情报检索
作者
Zhendong Liu,Xiaoli Liu,Hongliang Guan,Jie Yin,Fuzhou Duan,Shuaizhe Zhang,Wenhu Qv
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 356-368 被引量:5
标识
DOI:10.1016/j.isprsjprs.2023.06.011
摘要

A depth map fusion algorithm fuses depth maps from different perspectives into a unified coordinate framework and performs surface calculations to generate dense point clouds of the entire scene. The existing algorithms ensure the quality of these dense point clouds by eliminating inconsistencies between depth maps, but the problem of many redundant calculations often arises. In this paper, a depth map fusion algorithm based on pixel region prediction is proposed. First, the image combination is calculated to select a set of candidate neighbor images for each reference image in the scene. Second, voxels and measure estimates are constructed on a coarse scale, and an inference strategy and a corrector are proposed to merge pixel regions at a fine scale guided by the coarse scale. Finally, the deduced pixel regions at the fine scale are used as the image-space constraints for depth fusion. Public and actual oblique images datasets are used for experimental verification. Compared with the famous COLMAP, OPENMVS, Gipuma and ACMP methods, the number of redundant calculations is significantly reduced; according to Data1 ∼ Data9 in the experiment, as the number of images increases, the fusion efficiency is increased by 47.5% to 156.6%; at the same time, the point cloud accuracy is comparable to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想说完成签到,获得积分10
刚刚
clean发布了新的文献求助10
刚刚
刚刚
清秀凉面发布了新的文献求助10
1秒前
1秒前
cmmm完成签到 ,获得积分10
1秒前
snowman关注了科研通微信公众号
1秒前
3秒前
问奈何发布了新的文献求助10
3秒前
ding应助yizhi猫采纳,获得10
4秒前
慕青应助胡晓雨采纳,获得10
4秒前
大胆的音响完成签到 ,获得积分10
5秒前
香蕉觅云应助dll采纳,获得30
5秒前
Bloo完成签到,获得积分10
6秒前
Owen应助饱满的灵阳采纳,获得10
6秒前
7秒前
9秒前
midx完成签到,获得积分10
9秒前
10秒前
10秒前
13秒前
13秒前
Taegu完成签到,获得积分10
13秒前
舒心的飞双完成签到,获得积分10
14秒前
所所应助猪猪hero采纳,获得10
14秒前
patience发布了新的文献求助10
14秒前
CipherSage应助小苹果采纳,获得10
16秒前
16秒前
充电宝应助希依夏采纳,获得30
18秒前
隐形曼青应助周南采纳,获得10
18秒前
18秒前
19秒前
20秒前
20秒前
shanshan完成签到 ,获得积分10
20秒前
21秒前
21秒前
dll发布了新的文献求助30
22秒前
NexusExplorer应助dove采纳,获得10
22秒前
英俊的铭应助shang采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263241
求助须知:如何正确求助?哪些是违规求助? 4423888
关于积分的说明 13771111
捐赠科研通 4298829
什么是DOI,文献DOI怎么找? 2358729
邀请新用户注册赠送积分活动 1354999
关于科研通互助平台的介绍 1316209