亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A depth map fusion algorithm with improved efficiency considering pixel region prediction

像素 融合 计算机科学 比例(比率) 人工智能 算法 合并(版本控制) 图像融合 点云 点(几何) 计算机视觉 图像(数学) 模式识别(心理学) 数学 几何学 地理 语言学 地图学 哲学 情报检索
作者
Zhendong Liu,Xiaoli Liu,Hongliang Guan,Jie Yin,Fuzhou Duan,Shuaizhe Zhang,Wenhu Qv
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 356-368 被引量:5
标识
DOI:10.1016/j.isprsjprs.2023.06.011
摘要

A depth map fusion algorithm fuses depth maps from different perspectives into a unified coordinate framework and performs surface calculations to generate dense point clouds of the entire scene. The existing algorithms ensure the quality of these dense point clouds by eliminating inconsistencies between depth maps, but the problem of many redundant calculations often arises. In this paper, a depth map fusion algorithm based on pixel region prediction is proposed. First, the image combination is calculated to select a set of candidate neighbor images for each reference image in the scene. Second, voxels and measure estimates are constructed on a coarse scale, and an inference strategy and a corrector are proposed to merge pixel regions at a fine scale guided by the coarse scale. Finally, the deduced pixel regions at the fine scale are used as the image-space constraints for depth fusion. Public and actual oblique images datasets are used for experimental verification. Compared with the famous COLMAP, OPENMVS, Gipuma and ACMP methods, the number of redundant calculations is significantly reduced; according to Data1 ∼ Data9 in the experiment, as the number of images increases, the fusion efficiency is increased by 47.5% to 156.6%; at the same time, the point cloud accuracy is comparable to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
5秒前
wondor1111发布了新的文献求助10
8秒前
9秒前
10秒前
科研通AI6应助凶狠的秀发采纳,获得10
10秒前
yuanyuan发布了新的文献求助10
15秒前
大个应助yuanyuan采纳,获得10
30秒前
old幽露露完成签到 ,获得积分10
36秒前
123完成签到 ,获得积分10
36秒前
LIFE2020完成签到 ,获得积分10
40秒前
level完成签到 ,获得积分10
45秒前
46秒前
科研通AI6应助殷楷霖采纳,获得10
49秒前
NexusExplorer应助科研通管家采纳,获得10
51秒前
打打应助科研通管家采纳,获得10
51秒前
ceeray23应助科研通管家采纳,获得10
51秒前
科目三应助科研通管家采纳,获得10
51秒前
大模型应助科研通管家采纳,获得20
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
smg1307完成签到 ,获得积分10
56秒前
ggg完成签到 ,获得积分10
1分钟前
可爱的函函应助年轻豌豆采纳,获得10
1分钟前
1分钟前
1分钟前
落后的慕梅完成签到 ,获得积分10
1分钟前
Qiiiiii完成签到,获得积分10
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
jiangchang发布了新的文献求助10
1分钟前
jueshadi完成签到 ,获得积分10
1分钟前
sarah完成签到,获得积分10
1分钟前
hlq完成签到 ,获得积分10
1分钟前
1分钟前
jiangchang完成签到,获得积分10
1分钟前
乐乐应助yuanyuan采纳,获得10
1分钟前
仰勒完成签到 ,获得积分10
1分钟前
ZB完成签到,获得积分10
1分钟前
儒雅的城完成签到,获得积分10
1分钟前
欣喜的如冬完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898