PCLDet: Prototypical Contrastive Learning for Fine-Grained Object Detection in Remote Sensing Images

计算机科学 人工智能 目标检测 判别式 特征(语言学) 对象(语法) 特征提取 计算机视觉 特征学习 班级(哲学) 深度学习 模式识别(心理学) 遥感 语言学 地质学 哲学
作者
Lihan Ouyang,Guangmiao Guo,Leyuan Fang,Pedram Ghamisi,Jun Yue
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:7
标识
DOI:10.1109/tgrs.2023.3290091
摘要

The capacity of satellites to supply high-resolution imaging has promoted the fine-grained object detection task in remote sensing images. However, this type of object detection is challenging due to low interclass feature differences in objects. To address this issue, we propose a prototypical contrastive learning-based detector (PCLDet) for fine-grained object detection in remote sensing images. The PCLDet first introduces the prototype to learn the fine-grained objects’ features, and then adopts contrastive learning to compare the target and the learned features, thus improving the differentiability of the fine-grained object. Specifically, we first introduce the prototype, which represents the feature centers of each class, and then construct a prototype bank to store the feature prototypes of each class. Then, we introduce contrastive learning to extract the discriminative features by maximizing the interclass distance and minimizing the intraclass distance. Furthermore, we propose the ProtoCL loss as a part of the model optimization, which enables more representative prototypes to be learned. Finally, to address the long-tail problem in the remote sensing fine-grained object detection dataset, we propose a new proposal sampler, the class-balanced sampler (CBS) that can sample each class equally. Extensive experiments demonstrate that our method can achieve state-of-the-art performance on a commonly used aerial fine-grained object dataset (Fair1M) and aerial fine-grained ship dataset (OFSD) while maintaining high efficiency. The code will be available at https://github.com/G-Naughty/PCLDet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快的迎蓉完成签到,获得积分10
刚刚
1秒前
笨笨垣完成签到,获得积分20
1秒前
1秒前
机智的灵萱完成签到,获得积分10
1秒前
Sober完成签到 ,获得积分10
1秒前
小猪猪应助Kelly采纳,获得10
1秒前
BANG发布了新的文献求助10
2秒前
2秒前
2秒前
昏睡的蟠桃应助newman采纳,获得50
3秒前
3秒前
4秒前
4秒前
安之完成签到,获得积分10
5秒前
无名的喧嚣完成签到,获得积分10
5秒前
110完成签到 ,获得积分10
5秒前
Ogai完成签到,获得积分10
5秒前
123完成签到,获得积分20
5秒前
dingding完成签到,获得积分10
5秒前
陈仲完成签到,获得积分10
5秒前
5秒前
wocala完成签到,获得积分10
6秒前
JamesPei应助wying采纳,获得30
6秒前
积极松鼠发布了新的文献求助10
6秒前
荔枝发布了新的文献求助30
7秒前
547发布了新的文献求助30
8秒前
Orange应助苗觉觉采纳,获得10
8秒前
mly发布了新的文献求助10
8秒前
zhangjian发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
41应助FFSGF采纳,获得10
10秒前
深情未来完成签到,获得积分10
11秒前
壮观不斜发布了新的文献求助10
11秒前
555完成签到,获得积分20
11秒前
villanel发布了新的文献求助10
11秒前
12秒前
15327432191完成签到 ,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406