分数拉普拉斯
各向异性
拉普拉斯算子
对数
兰姆达
单调函数
操作员(生物学)
物理
BETA(编程语言)
对称(几何)
非线性系统
生物学中的对称性
数学分析
数学物理
数学
量子力学
几何学
计算机科学
生物化学
化学
抑制因子
转录因子
基因
程序设计语言
作者
Lihong Zhang,Wenwen Hou,Juan J. Nieto,Guotao Wang
摘要
In this paper, by introducing an anisotropic tempered fractional $ p $-Laplacian operator $ (-\Delta)_{p, \lambda}^{\beta/2, m} $, based on the anisotropic fractional Laplacian $ \Delta_{m}^{\beta/2} $ and the tempered one $ \Delta_{m}^{\beta/2, \lambda} $, which are studied by Deng et.al recently in [13], an anisotropic tempered fractional $ p $-Laplacian model involving logarithmic nonlinearity is considered. We first establish maximum principle and boundary estimate, which play a very crucial role in the later process. Then we obtain radial symmetry and monotonicity results by using the direct method of moving planes.
科研通智能强力驱动
Strongly Powered by AbleSci AI