Utilization of synthetic minority oversampling technique for improving potato yield prediction using remote sensing data and machine learning algorithms with small sample size of yield data

过采样 算法 人工智能 人工神经网络 均方误差 支持向量机 机器学习 计算机科学 随机森林 数学 数据挖掘 统计 计算机网络 带宽(计算)
作者
Hamid Ebrahimy,Yi Wang,Zhou Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 12-25 被引量:12
标识
DOI:10.1016/j.isprsjprs.2023.05.015
摘要

In recent years, the integration of machine learning (ML) algorithms and remote sensing data has been the commonly deployed practice for potato yield prediction in different scales. Since the quantity and quality of training data significantly affect ML algorithms' applicability, their effective use in some cases can be challenging and expensive. In this paper, we utilized the synthetic minority oversampling technique (SMOTE) algorithm to generate synthetic data for potato yield prediction. We conducted several experiments in two study sites called CS1 and CS2. The SMOTE algorithm was employed to produce synthetic data at five multiplication rates (5, 10, 20, 40, and 80). Six ML algorithms including random forest regression (RFR), support vector regression (SVR), K- nearest neighbor (KNN), extreme gradient boosting (XGB), deep neural network (DNN), and stacked auto-encoder of neural network (SAE) were used for potato yield prediction. To train the ML algorithms, multiple sets of synthetically generated data were combined with the original data. The similarity of synthetic data and original data was evaluated by two metrics (Kullback-Leibler divergence (KLD) and Jensen-Shannon divergence (JSD)), as well as PCA-based visualization. On the other hand, the root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) metrics were calculated to evaluate the performance of ML algorithms in potato yield prediction. Both quantitative and visual evaluations showed close similarity between the synthetic and original data. The average JSD (KLD) in CS1 and CS2 were 0.00028 (0.0031) and 0.161 (0.271), respectively. The ML algorithms showed noticeable differences when it comes to utilizing synthetic data. The RFR, XGB, DNN, and SAE algorithms positively responded to the addition of synthetic data, while SVR and KNN were the only ML algorithms that negatively responded to the addition of synthetic data. The DNN algorithm exhibited the highest positive response to the addition of synthetic data with an average RMSE change of −2.35 point percentage in CS1 and −24.54 point percentage in CS2. Although none of the ML algorithms and synthetic sample sizes provided the highest prediction performance in all the settings, which was plausible given the inherent differences among the selected ML algorithms, the RFR algorithm trained with the combination of original and quintupled synthetic data was the most appropriate choice for potato yield prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天行马发布了新的文献求助10
刚刚
oys关闭了oys文献求助
3秒前
Abi发布了新的文献求助10
3秒前
MoriZhang发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
rrrrrr发布了新的文献求助10
5秒前
丁丁发布了新的文献求助10
6秒前
6秒前
Yuxin完成签到,获得积分10
6秒前
明理的小蜜蜂完成签到 ,获得积分10
6秒前
科研通AI5应助alex采纳,获得30
6秒前
yuchen12a发布了新的文献求助10
6秒前
HC完成签到,获得积分10
7秒前
9秒前
听海发布了新的文献求助10
10秒前
安静凡旋发布了新的文献求助10
10秒前
顾矜应助辰月贰拾采纳,获得30
11秒前
13秒前
13秒前
13秒前
独徙完成签到 ,获得积分10
13秒前
14秒前
科研通AI5应助Metrix采纳,获得10
15秒前
15秒前
思源应助ZZZ采纳,获得10
16秒前
JamesPei应助幸福的初晴采纳,获得10
17秒前
寒月发布了新的文献求助10
17秒前
18秒前
18秒前
大圣完成签到,获得积分10
19秒前
听海发布了新的文献求助10
20秒前
英姑应助顾化蛹采纳,获得10
20秒前
zhang005on发布了新的文献求助10
20秒前
21秒前
无敌W完成签到,获得积分10
22秒前
文艺鞋子发布了新的文献求助10
23秒前
嘿嘿嘿发布了新的文献求助10
23秒前
长颈鹿完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679