Cyber Defence Based on Artificial Intelligence and Neural Network Model in Cybersecurity

恶意软件 计算机科学 入侵检测系统 人工神经网络 脆弱性(计算) 计算机安全 人工智能 机器学习 脆弱性评估 软件 心理学 心理弹性 心理治疗师 程序设计语言
作者
D. Sugumaran,Y. M. Mahaboob John,Jullie Josephine D. C.,Kireet Joshi,G. Manikandan,Geethamanikanta Jakka
标识
DOI:10.1109/iconstem56934.2023.10142590
摘要

Cybersecurity is an increasingly critical aspect of modern society, with cyber attacks becoming more sophisticated and frequent. Artificial intelligence (AI) and neural network models have emerged as promising tools for improving cyber defense. This paper explores the potential of AI and neural network models in cybersecurity, focusing on their applications in intrusion detection, malware detection, and vulnerability analysis. Intruder detection, or "intrusion detection," is the process of identifying Invasion of Privacy to a computer system. AI-based security systems that can spot intrusions (IDS) use AI-powered packet-level network traffic analysis and intrusion detection patterns to signify an assault. Neural network models can also be used to improve IDS accuracy by modeling the behavior of legitimate users and detecting anomalies. Malware detection involves identifying malicious software on a computer system. AI-based malware machine-learning algorithms are used by detecting systems to assess the behavior of software and recognize patterns that indicate malicious activity. Neural network models can also serve to hone the precision of malware identification by modeling the behavior of known malware and identifying new variants.Vulnerability analysis involves identifying weaknesses in a computer system that could be exploited by attackers. AI-based vulnerability analysis systems use machine learning algorithms to analyze system configurations and identify potential vulnerabilities. Neural network models can also be used to improve the accuracy of vulnerability analysis by modeling the behavior of known vulnerabilities and identifying new ones.Overall, AI and neural network models have significant potential in cybersecurity. By improving intrusion detection, malware detection, and vulnerability analysis, they can help organizations better defend against cyber attacks. However, these technologies also present challenges, including a lack of understanding of the importance of data in machine learning and the potential for attackers to use AI themselves. As such, careful consideration is necessary when implementing AI and neural network models in cybersecurity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Davidjun采纳,获得10
刚刚
1秒前
Adi完成签到,获得积分10
2秒前
踌躇前半生完成签到,获得积分10
2秒前
2秒前
lzr发布了新的文献求助10
4秒前
李凤凤发布了新的文献求助10
6秒前
整齐歌曲发布了新的文献求助10
7秒前
Xiangyang完成签到 ,获得积分10
8秒前
英姑应助结实的凉面采纳,获得10
10秒前
11秒前
领导范儿应助LYHT采纳,获得10
13秒前
tori完成签到,获得积分10
13秒前
15秒前
研友_ZG4ml8发布了新的文献求助10
15秒前
18秒前
jie发布了新的文献求助10
21秒前
21秒前
tannie完成签到 ,获得积分10
23秒前
老橡树发布了新的文献求助10
24秒前
HBXAurora发布了新的文献求助50
25秒前
26秒前
冰勾板勾发布了新的文献求助10
26秒前
Jasper应助一二采纳,获得10
28秒前
medivhpanda完成签到,获得积分10
31秒前
搜集达人应助哎呀小艾哈采纳,获得10
33秒前
无花果应助研友_ZG4ml8采纳,获得10
33秒前
34秒前
KatzeBaliey发布了新的文献求助100
37秒前
阳光衣完成签到,获得积分10
37秒前
福娃选手完成签到 ,获得积分10
37秒前
传统的安青完成签到 ,获得积分10
38秒前
不配.应助Jc采纳,获得20
39秒前
一二发布了新的文献求助10
40秒前
HHH完成签到,获得积分10
40秒前
41秒前
42秒前
哈哈完成签到,获得积分10
43秒前
yyl完成签到 ,获得积分10
43秒前
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134969
求助须知:如何正确求助?哪些是违规求助? 2785927
关于积分的说明 7774469
捐赠科研通 2441746
什么是DOI,文献DOI怎么找? 1298163
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825