Multimodal cross enhanced fusion network for diagnosis of Alzheimer’s disease and subjective memory complaints

判别式 卷积神经网络 深度学习 可解释性 计算机科学 人工智能 机器学习 模式识别(心理学)
作者
Yilin Leng,Wenju Cui,Yunsong Peng,Caiying Yan,Yuzhu Cao,Zhuangzhi Yan,Shuangqing Chen,Xi Jiang,Jian Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106788-106788 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.106788
摘要

Deep learning methods using multimodal imagings have been proposed for the diagnosis of Alzheimer's disease (AD) and its early stages (SMC, subjective memory complaints), which may help to slow the progression of the disease through early intervention. However, current fusion methods for multimodal imagings are generally coarse and may lead to suboptimal results through the use of shared extractors or simple downscaling stitching. Another issue with diagnosing brain diseases is that they often affect multiple areas of the brain, making it important to consider potential connections throughout the brain. However, traditional convolutional neural networks (CNNs) may struggle with this issue due to their limited local receptive fields. To address this, many researchers have turned to transformer networks, which can provide global information about the brain but can be computationally intensive and perform poorly on small datasets. In this work, we propose a novel lightweight network called MENet that adaptively recalibrates the multiscale long-range receptive field to localize discriminative brain regions in a computationally efficient manner. Based on this, the network extracts the intensity and location responses between structural magnetic resonance imagings (sMRI) and 18-Fluoro-Deoxy-Glucose Positron Emission computed Tomography (FDG-PET) as an enhancement fusion for AD and SMC diagnosis. Our method is evaluated on the publicly available ADNI datasets and achieves 97.67% accuracy in AD diagnosis tasks and 81.63% accuracy in SMC diagnosis tasks using sMRI and FDG-PET. These results achieve state-of-the-art (SOTA) performance in both tasks. To the best of our knowledge, this is one of the first deep learning research methods for SMC diagnosis with FDG-PET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JX完成签到,获得积分10
1秒前
故意的千秋关注了科研通微信公众号
2秒前
2秒前
3秒前
3秒前
清风荷影完成签到 ,获得积分10
4秒前
5秒前
科研通AI5应助文静的夜澄采纳,获得10
5秒前
Mai完成签到,获得积分10
5秒前
5秒前
小肥羊完成签到,获得积分20
5秒前
sodawater发布了新的文献求助10
6秒前
听寒发布了新的文献求助150
6秒前
6秒前
清欢发布了新的文献求助10
7秒前
贪玩的若之完成签到,获得积分10
7秒前
忧郁含海完成签到,获得积分10
8秒前
NZH发布了新的文献求助10
8秒前
科研通AI5应助路路采纳,获得30
8秒前
英俊的铭应助jiyuan采纳,获得10
9秒前
Backlight发布了新的文献求助10
10秒前
繁笙完成签到,获得积分10
10秒前
10秒前
拆东墙发布了新的文献求助10
11秒前
情怀应助NovermberRain采纳,获得10
11秒前
微信研友完成签到 ,获得积分10
11秒前
11秒前
777发布了新的文献求助10
12秒前
13秒前
YYJ25完成签到,获得积分10
13秒前
14秒前
wanci应助南瓜气气采纳,获得30
14秒前
djbj2022完成签到,获得积分10
15秒前
Verano_4完成签到,获得积分10
15秒前
15秒前
八段锦发布了新的文献求助10
16秒前
科研通AI5应助光亮灯泡采纳,获得10
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320