亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Endmember Bundle Extraction Framework for Capturing Endmember Variability by Dynamic Optimization

端元 高光谱成像 模式识别(心理学) 束流调整 人工智能 像素 计算机科学 数学 算法 图像(数学)
作者
Rong Liu,Changhai Lei,Linfu Xie,X. P. Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:1
标识
DOI:10.1109/tgrs.2024.3354046
摘要

The spectral variability problem is a big challenge in hyperspectral unmixing. Endmember bundles have been used to address the spectral variability problem by adopting a bundle of endmember spectra to represent one kind of endmember class. Existing endmember bundle extraction algorithms mainly rely on the convex geometry assumption and integrate endmembers from image subsets as endmember bundles. On the one hand, they suffer from high risk of bad performance for real hyperspectral scene where the convex geometry assumption is not satisfied. On the other hand, endmember variabilities within image subsets are neglected, which may lose representative endmembers. In this paper, we propose a novel endmember bundle extraction framework to capture endmember variability by introducing a dynamic optimization mechanism. Endmember bundles are obtained by dynamically minimizing the root-mean-square error between original pixels and reconstructed pixels through an iteration process; and a particle swarm optimization method is introduced to find the optimal endmember combination in each iteration. The proposed endmember bundle extraction framework imposes no assumption on the hyperspectral data distribution and has great potential to be used in complex hyperspectral scenes. Experimental results on two real hyperspectral datasets demonstrate that the proposed algorithm is able to obtain endmember bundles that well express the spectral variability, and the performance of the proposed algorithm is competitive with the state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Perry完成签到,获得积分10
2秒前
小俊完成签到,获得积分10
2秒前
橘橘橘子皮完成签到 ,获得积分10
4秒前
7秒前
Mingyue123完成签到,获得积分10
9秒前
17秒前
18秒前
纳米大亨发布了新的文献求助10
22秒前
打打应助阳光的定帮采纳,获得10
24秒前
zywoo发布了新的文献求助30
25秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
好巧完成签到,获得积分10
29秒前
32秒前
Nan发布了新的文献求助30
36秒前
36秒前
38秒前
昏睡的山柳完成签到 ,获得积分10
39秒前
还在考虑完成签到,获得积分10
40秒前
Qssai发布了新的文献求助10
41秒前
卡卡东完成签到 ,获得积分20
41秒前
阳光的定帮完成签到,获得积分10
47秒前
加湿器应助kingwill采纳,获得30
53秒前
53秒前
Luuu发布了新的文献求助10
57秒前
1分钟前
赘婿应助歌西卡采纳,获得10
1分钟前
liuyan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
淡定荧发布了新的文献求助10
1分钟前
Elena发布了新的文献求助10
1分钟前
1分钟前
1分钟前
十七完成签到,获得积分10
1分钟前
1分钟前
歌西卡发布了新的文献求助10
1分钟前
oscar完成签到,获得积分10
1分钟前
M3L2完成签到,获得积分10
1分钟前
M3L2发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356802
求助须知:如何正确求助?哪些是违规求助? 2980374
关于积分的说明 8694214
捐赠科研通 2662053
什么是DOI,文献DOI怎么找? 1457536
科研通“疑难数据库(出版商)”最低求助积分说明 674806
邀请新用户注册赠送积分活动 665723