亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Endmember Bundle Extraction Framework for Capturing Endmember Variability by Dynamic Optimization

端元 高光谱成像 模式识别(心理学) 束流调整 人工智能 像素 计算机科学 数学 算法 图像(数学)
作者
Rong Liu,Cong Lei,Linfu Xie,X. P. Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:10
标识
DOI:10.1109/tgrs.2024.3354046
摘要

The spectral variability problem is a big challenge in hyperspectral unmixing. Endmember bundles have been used to address the spectral variability problem by adopting a bundle of endmember spectra to represent one kind of endmember class. Existing endmember bundle extraction algorithms mainly rely on the convex geometry assumption and integrate endmembers from image subsets as endmember bundles. On the one hand, they suffer from high risk of bad performance for real hyperspectral scene where the convex geometry assumption is not satisfied. On the other hand, endmember variabilities within image subsets are neglected, which may lose representative endmembers. In this paper, we propose a novel endmember bundle extraction framework to capture endmember variability by introducing a dynamic optimization mechanism. Endmember bundles are obtained by dynamically minimizing the root-mean-square error between original pixels and reconstructed pixels through an iteration process; and a particle swarm optimization method is introduced to find the optimal endmember combination in each iteration. The proposed endmember bundle extraction framework imposes no assumption on the hyperspectral data distribution and has great potential to be used in complex hyperspectral scenes. Experimental results on two real hyperspectral datasets demonstrate that the proposed algorithm is able to obtain endmember bundles that well express the spectral variability, and the performance of the proposed algorithm is competitive with the state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的萝发布了新的文献求助10
3秒前
酷酷紫易完成签到,获得积分10
3秒前
Baylin发布了新的文献求助10
3秒前
5秒前
章鱼完成签到,获得积分10
5秒前
酷酷紫易发布了新的文献求助30
8秒前
大个应助时尚的萝采纳,获得10
9秒前
17秒前
wingmay完成签到,获得积分20
22秒前
酷酷玉兰完成签到 ,获得积分10
28秒前
30秒前
35秒前
大模型应助烛夜黎采纳,获得10
38秒前
Criminology34应助Iris采纳,获得10
40秒前
闲鱼耶鹤完成签到 ,获得积分10
43秒前
44秒前
48秒前
烛夜黎发布了新的文献求助10
49秒前
拉长的从灵完成签到,获得积分10
49秒前
顺熙发布了新的文献求助10
53秒前
等风来LYY完成签到,获得积分10
59秒前
顺熙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
yf完成签到,获得积分10
1分钟前
sulin完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
Nature应助激昂的吐司采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
cherish完成签到,获得积分10
2分钟前
silence完成签到 ,获得积分10
2分钟前
2分钟前
幽默孤菱发布了新的文献求助10
2分钟前
2分钟前
善学以致用应助ceeray23采纳,获得20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664182
求助须知:如何正确求助?哪些是违规求助? 4858397
关于积分的说明 15107254
捐赠科研通 4822630
什么是DOI,文献DOI怎么找? 2581600
邀请新用户注册赠送积分活动 1535799
关于科研通互助平台的介绍 1494030