摘要
Chapter 4 Molecular diagnostics and risk assessment in myeloid malignancies Christian Scharenberg, Christian Scharenberg Department of Hematology, Skaraborgs Hospital Skövde, Skövde, SwedenSearch for more papers by this authorTorsten Haferlach, Torsten Haferlach MLL Munich Leukemia Laboratory, Munich, GermanySearch for more papers by this author Christian Scharenberg, Christian Scharenberg Department of Hematology, Skaraborgs Hospital Skövde, Skövde, SwedenSearch for more papers by this authorTorsten Haferlach, Torsten Haferlach MLL Munich Leukemia Laboratory, Munich, GermanySearch for more papers by this author Book Editor(s):Drew Provan, Drew ProvanSearch for more papers by this authorHillard M. Lazarus, Hillard M. LazarusSearch for more papers by this author First published: 08 March 2024 https://doi.org/10.1002/9781394180486.ch4 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Myeloid malignancies present complex challenges in diagnosis and treatment. This book chapter provides a comprehensive exploration of molecular diagnostics and risk assessment in myeloid malignancies. It covers advanced detection methods, karyotypic evolution, clinical implications, personalized treatment selection, and discusses therapy-related chromosomal aberrations post-cytotoxic therapy. Additionally, the chapter delves into mutations in splicing factors, epigenetic regulation, histone modification, DNA methylation, the cohesin complex, transcription factors, and cell signaling genes. It offers a critical resource for researchers and clinicians seeking a deeper understanding of the molecular underpinnings of myeloid malignancies, ultimately contributing to improved patient care. Further reading Abelson , S. , Collord , G. , Ng , S.W.K. et al . ( 2018 ). Prediction of acute myeloid leukaemia risk in healthy individuals . Nature 559 : 400 – 404 . 10.1038/s41586-018-0317-6 CASPubMedWeb of Science®Google Scholar Arber , D.A. , Orazi , A. , Hasserjian , R. et al . ( 2016 ). The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia . Blood 127 : 2391 – 2405 . 10.1182/blood-2016-03-643544 CASPubMedWeb of Science®Google Scholar Bacher , U. , Schnittger , S. , Macijewski , K. et al . ( 2012 ). Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity . Blood 119 : 4719 – 4722 . 10.1182/blood-2011-12-395574 CASPubMedWeb of Science®Google Scholar Bernard , E. , Tuechler , H. , Greenberg , P.L. et al . ( 2022 ). Molecular international prognostic scoring system for myelodysplastic syndromes . NEJM Evid. 1 , EVIDoa2200008. 10.1056/EVIDoa2200008 PubMedGoogle Scholar Bersanelli , M. , Travaglino , E. , Meggendorfer , M. et al . ( 2021 ). Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes . J. Clin. Oncol. 39 : 1223 – 1233 . 10.1200/JCO.20.01659 CASPubMedWeb of Science®Google Scholar Brandts , C.H. , Sargin , B. , Rode , M. et al . ( 2005 ). Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation . Cancer Res. 65 : 9643 – 9650 . 10.1158/0008-5472.CAN-05-0422 CASPubMedWeb of Science®Google Scholar Cancer Genome Atlas Research Network ( 2013 ). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia . N. Engl. J. Med. 368 : 2059 – 2074 . 10.1056/NEJMoa1301689 CASPubMedWeb of Science®Google Scholar Chen , W. , Drakos , E. , Grammatikakis , I. et al . ( 2010 ). mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells . Mol. Cancer 9 : 292 . 10.1186/1476-4598-9-292 PubMedWeb of Science®Google Scholar Choudhary , C. , Schwable , J. , Brandts , C. et al . ( 2005 ). AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations . Blood 106 : 265 – 273 . 10.1182/blood-2004-07-2942 CASPubMedWeb of Science®Google Scholar Döhner , H. , Estey , E. , Grimwade , D. et al . ( 2017 ). Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel . Blood 129 : 424 – 447 . 10.1182/blood-2016-08-733196 CASPubMedWeb of Science®Google Scholar Döhner , H. , Wei , A.H. , Appelbaum , F.R. et al . ( 2022 ). Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN . Blood 140 : 1345 – 1377 . 10.1182/blood.2022016867 PubMedWeb of Science®Google Scholar Döhner , H. , Weisdorf , D.J. , and Bloomfield , C.D. ( 2015 ). Acute myeloid leukemia . N. Engl. J. Med. 373 : 1136 – 1152 . 10.1056/NEJMra1406184 CASPubMedWeb of Science®Google Scholar Falini , B. , Macijewski , K. , Weiss , T. et al . ( 2010 ). Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1) . Blood 115 : 3776 – 3786 . 10.1182/blood-2009-08-240457 CASPubMedWeb of Science®Google Scholar Gaidzik , V.I. , Bullinger , L. , Schlenk , R.F. et al . ( 2011 ). RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group . J. Clin. Oncol. 29 : 1364 – 1372 . 10.1200/JCO.2010.30.7926 PubMedWeb of Science®Google Scholar Gallì , A. , Todisco , G. , Catamo , E. et al . ( 2021 ). Relationship between clone metrics and clinical outcome in clonal cytopenia . Blood 138 : 965 – 976 . 10.1182/blood.2021011323 CASPubMedWeb of Science®Google Scholar Genovese , G. , Kahler , A.K. , Handsaker , R.E. et al . ( 2014 ). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence . N. Engl. J. Med. 371 : 2477 – 2487 . 10.1056/NEJMoa1409405 CASPubMedWeb of Science®Google Scholar Greenberg , P.L. , Tuechler , H. , Schanz , J. et al . ( 2012 ). Revised international prognostic scoring system (IPSS-R) for myelodysplastic syndromes . Blood 120 : 2454 – 2465 . 10.1182/blood-2012-03-420489 CASPubMedWeb of Science®Google Scholar Greif , P.A. , Dufour , A. , Konstandin , N.P. et al . ( 2012 ). GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia . Blood 120 : 395 – 403 . 10.1182/blood-2012-01-403220 CASPubMedWeb of Science®Google Scholar Grimwade , D. , Ivey , A. , and Huntly , B.J. ( 2016 ). Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance . Blood 127 : 29 – 41 . 10.1182/blood-2015-07-604496 CASPubMedWeb of Science®Google Scholar Jaiswal , S. ( 2020 ). Clonal hematopoiesis and nonhematologic disorders . Blood 136 : 1606 – 1614 . PubMedWeb of Science®Google Scholar Jaiswal , S. , Fontanillas , P. , Flannick , J. et al . ( 2014 ). Age-related clonal hematopoiesis associated with adverse outcomes . N. Engl. J. Med. 371 : 2488 – 2498 . 10.1056/NEJMoa1408617 CASPubMedWeb of Science®Google Scholar Jaiswal , S. , Natarajan , P. , Silver , A.J. et al . ( 2017 ). Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease . N. Engl. J. Med. 377 : 111 – 121 . 10.1056/NEJMoa1701719 PubMedWeb of Science®Google Scholar Jongen-Lavrencic , M. , Grob , T. , Hanekamp , D. et al . ( 2018 ). Molecular minimal residual disease in acute myeloid leukemia . N. Engl. J. Med. 378 : 1189 – 1199 . 10.1056/NEJMoa1716863 CASPubMedWeb of Science®Google Scholar Kunchala , P. , Kuravi , S. , Jensen , R. et al . ( 2018 ). When the good go bad: mutant NPM1 in acute myeloid leukemia . Blood Rev. 32 : 167 – 183 . 10.1016/j.blre.2017.11.001 CASPubMedWeb of Science®Google Scholar Malcovati , L. , Galli , A. , Travaglino , E. et al . ( 2017 ). Clinical significance of somatic mutation in unexplained blood cytopenia . Blood 129 : 3371 – 3378 . 10.1182/blood-2017-01-763425 CASPubMedWeb of Science®Google Scholar Nazha , A. , Komrokji , R. , Meggendorfer , M. et al . ( 2021 ). Personalized prediction model to risk stratify patients with myelodysplastic syndromes . J. Clin. Oncol. 39 : 3737 – 3746 . 10.1200/JCO.20.02810 CASPubMedWeb of Science®Google Scholar Pabst , T. , Mueller , B.U. , Zhang , P. et al . ( 2001 ). Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia . Nat. Genet. 27 : 263 – 270 . 10.1038/85820 CASPubMedWeb of Science®Google Scholar Pang , Q. , Christianson , T.A. , Koretsky , T. et al . ( 2003 ). Nucleophosmin interacts with and inhibits the catalytic function of eukaryotic initiation factor 2 kinase PKR . J. Biol. Chem. 278 : 41709 – 41717 . 10.1074/jbc.M301392200 CASPubMedWeb of Science®Google Scholar Papaemmanuil , E. , Gerstung , M. , Bullinger , L. et al . ( 2016 ). Genomic classification and prognosis in acute myeloid leukemia . N. Engl. J. Med. 374 : 2209 – 2221 . 10.1056/NEJMoa1516192 CASPubMedWeb of Science®Google Scholar Paschka , P. , Schlenk , R.F. , Gaidzik , V.I. et al . ( 2015 ). ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian acute myeloid leukemia study group . Haematologica 100 : 324 – 330 . 10.3324/haematol.2014.114157 CASPubMedWeb of Science®Google Scholar Schnittger , S. , Dicker , F. , Kern , W. et al . ( 2011 ). RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis . Blood 117 : 2348 – 2357 . 10.1182/blood-2009-11-255976 CASPubMedWeb of Science®Google Scholar Schuurhuis , G.J. , Heuser , M. , Freeman , S. et al . ( 2018 ). Minimal/measurable residual disease in AML: consensus document from ELN MRD working party . Blood 131 : 1275 – 1291 . 10.1182/blood-2017-09-801498 CASPubMedWeb of Science®Google Scholar Stone , R.M. , Mandrekar , S.J. , Sanford , B.L. et al . ( 2017 ). Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation . N. Engl. J. Med. 377 : 454 – 464 . 10.1056/NEJMoa1614359 CASPubMedWeb of Science®Google Scholar Swerdlow , S.H. , Campo , E. , Pileri , S.A. et al . ( 2016 ). The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms . Blood 127 : 2375 – 2390 . 10.1182/blood-2016-01-643569 CASPubMedWeb of Science®Google Scholar Taskesen , E. , Bullinger , L. , Corbacioglu , A. et al . ( 2011 ). Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity . Blood 117 : 2469 – 2475 . 10.1182/blood-2010-09-307280 CASPubMedWeb of Science®Google Scholar Wang , H.F. , Takenaka , K. , Nakanishi , A. , and Miki , Y. ( 2011 ). BRCA2 and nucleophosmin coregulate centrosome amplification and form a complex with the Rho effector kinase ROCK2 . Cancer Res. 71 : 68 – 77 . 10.1158/0008-5472.CAN-10-0030 CASPubMedWeb of Science®Google Scholar Xie , M. , Lu , C. , Wang , J. et al . ( 2014 ). Age-related mutations associated with clonal hematopoietic expansion and malignancies . Nat. Med. 20 : 1472 – 1478 . 10.1038/nm.3733 CASPubMedWeb of Science®Google Scholar Molecular Hematology, Fifth Edition ReferencesRelatedInformation