High-precision target ranging in complex orchard scenes by utilizing semantic segmentation results and binocular vision

计算机科学 人工智能 分割 计算机视觉 特征(语言学) 测距 比例(比率) 编码器 模式识别(心理学) 地理 语言学 地图学 电信 操作系统 哲学
作者
Wen Yu,Jinlin Xue,Han Sun,Song Yue,Pengfei Lv,Shaohua Liu,Yangyang Chu,Tianyu Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108440-108440 被引量:3
标识
DOI:10.1016/j.compag.2023.108440
摘要

The automation of orchard production is increasingly relying on robotics, driven by the advancements in artificial intelligence technology. However, accurately comprehending semantic information and precisely locating various targets within orchard environments remain challenges. Current research often relies on expensive multi-sensor fusion techniques or vision-only approaches that yield inadequate segmentation outcomes for perceiving orchard surroundings. To address these issues, this article proposes a novel approach for target ranging in complex orchard scenes, leveraging semantic segmentation results. The article introduces the MsFF-Segformer model, which employs multi-scale feature fusion to generate high-precision semantic segmentation images. The model incorporates the MiT-B0 encoder, which utilizes a pure attention mechanism, and the MsFF decoder, specifically designed for multi-scale feature fusion. The MsFF decoder includes the AFAM module to effectively align features of adjacent scales. Additionally, the channel attention module and depth separable convolution module are introduced to reduce model parameter size and obtain feature vectors with rich semantic levels, enhancing the segmentation performance of multi-scale targets in orchards. Based on the accurate semantic segmentation outcomes in orchard environments, this study introduces a novel approach named TPDMR that integrates binocular vision to estimate the distances of various objects within orchards. Firstly, the process involves matching the semantic category matrix with the depth information matrix. Subsequently, the depth information array that represents the target category is obtained, and any invalid depth information is filtered out. Finally, the average depth of the target is calculated. Evaluation of the MsFF-Segformer model on a self-made orchard dataset demonstrates superior performance compared to U-net and other models, achieving a Mean Intersection over Union (MIoU) of 86.52 % and a Mean Pixel Accuracy (MPA) of 94.05 %. The parameters and prediction time for a single frame are 15.1 M and 0.019 s, respectively. These values are significantly lower than those of U-net, Deeplabv3+, and Hrnet models, with reductions of 84.1 %, 32.5 %, 5.9 % and 69.4 %, 59.7 %, 64.2 % respectively. The TPDMR method demonstrates a high level of accuracy and stability in target ranging, with a ranging error of less than 6 % across all targets. Furthermore, the overall algorithm runtime is estimated to be approximately 0.8 s, indicating efficient performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Pursue。发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
千寻发布了新的文献求助10
2秒前
2秒前
饼子完成签到 ,获得积分10
3秒前
4秒前
wuniuniu发布了新的文献求助10
6秒前
6秒前
6秒前
wxiao完成签到,获得积分10
7秒前
7秒前
AnnChen发布了新的文献求助10
8秒前
SciGPT应助千寻采纳,获得10
8秒前
Mry完成签到,获得积分10
8秒前
8秒前
小美美完成签到,获得积分20
8秒前
彭于晏应助活泼的心锁采纳,获得10
8秒前
9秒前
9秒前
cream完成签到 ,获得积分10
9秒前
祥小哥完成签到,获得积分10
9秒前
执着易绿完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
一二完成签到,获得积分10
10秒前
子凡发布了新的文献求助150
11秒前
12秒前
wuniuniu完成签到,获得积分10
12秒前
FreyaDoyle完成签到 ,获得积分10
13秒前
13秒前
13秒前
DKW完成签到,获得积分10
13秒前
13秒前
14秒前
廾匸发布了新的文献求助10
14秒前
淡然的香薇完成签到,获得积分10
15秒前
千寻完成签到,获得积分10
15秒前
馨馨发布了新的文献求助10
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667773
求助须知:如何正确求助?哪些是违规求助? 3226242
关于积分的说明 9768746
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608301
邀请新用户注册赠送积分活动 759615
科研通“疑难数据库(出版商)”最低求助积分说明 735407