A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries

计算机科学 健康状况 编码器 解耦(概率) 工程类 功率(物理) 控制工程 电池(电) 量子力学 操作系统 物理
作者
Haichi Huang,Chong Bian,Mengdan Wu,Dong An,Shunkun Yang
出处
期刊:Energy [Elsevier BV]
卷期号:288: 129801-129801 被引量:36
标识
DOI:10.1016/j.energy.2023.129801
摘要

Accurate estimating the state of health (SOH) and state of charge (SOC) is crucial for ensuring the reliable and safe operation of lithium-ion batteries. Traditional methods for the joint estimation of SOC and SOH typically rely on separate models, resulting in a decoupling of their relationship. Moreover, the current convolutional and recurrent-based deep models overlook the inherent connection between local features and global temporal features. These limitations not only hinder the extraction of combined feature information relevant to SOC and SOH during the charging process, but also increase computational complexity and diminish estimation accuracy. To solve these problems, this study proposes a novel SOC–SOH Estimation Framework (SSEF). The framework achieves parameter sharing by segmented training, effectively accounting for the intrinsic coupling between SOC and SOH. This enables a unified joint estimation of the two variables, leading to a substantial enhancement in efficiency. Additionally, a novel charging encoder that alternates between Temporal Convolutional Network and Bidirectional Gated Recurrent Unit is designed. It captures local temporal information and long-term dependencies related to SOC and SOH during charging. SSEF enables precise SOC and SOH estimation for whole-life-cycle lithium-ion batteries, enhancing accuracy and efficiency compared to prevalent methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
e746700020完成签到,获得积分10
刚刚
哈哈哈发布了新的文献求助10
1秒前
斯文败类应助陈一晨111采纳,获得10
1秒前
冷酷钢笔完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
jelly10应助,,采纳,获得10
3秒前
zengyan完成签到 ,获得积分10
3秒前
牛爷爷cos壮壮妈完成签到,获得积分10
3秒前
3秒前
Victoria完成签到,获得积分10
5秒前
6秒前
东东东方完成签到,获得积分10
6秒前
7秒前
搞笑地雷完成签到 ,获得积分10
7秒前
8秒前
zhao发布了新的文献求助10
8秒前
chenqiumu应助Laura567采纳,获得30
8秒前
8秒前
8秒前
9秒前
9秒前
Ying完成签到,获得积分10
10秒前
11秒前
Ava应助汽水采纳,获得10
12秒前
可靠的依凝完成签到,获得积分10
12秒前
一天完成签到,获得积分10
12秒前
睦月发布了新的文献求助10
13秒前
Ying发布了新的文献求助10
13秒前
1111发布了新的文献求助10
13秒前
整齐从蓉完成签到 ,获得积分20
13秒前
风凌发布了新的文献求助10
13秒前
展锋发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
灼灼朗朗完成签到,获得积分10
14秒前
@小小搬砖瑞完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5259868
求助须知:如何正确求助?哪些是违规求助? 4421366
关于积分的说明 13762922
捐赠科研通 4295395
什么是DOI,文献DOI怎么找? 2356893
邀请新用户注册赠送积分活动 1353212
关于科研通互助平台的介绍 1314393