Transformer-based Named Entity Recognition for Clinical Cancer Drug Toxicity by Positive-unlabeled Learning and KL Regularizers

药品 药物毒性 命名实体识别 变压器 毒性 计算机科学 人工智能 医学 药理学 内科学 工程类 电气工程 系统工程 电压 任务(项目管理)
作者
Weixin Xie,Jiayu Xu,Chengkui Zhao,Jin Li,Shuangze Han,Tianyu Shao,Limei Wang,Weixing Feng
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19 (8): 738-751
标识
DOI:10.2174/0115748936278299231213045441
摘要

Background: With increasing rates of polypharmacy, the vigilant surveillance of clinical drug toxicity has emerged as an important With increasing rates of polypharmacy, the vigilant surveillance of clinical drug toxicity has emerged as an important concern. Named Entity Recognition (NER) stands as an indispensable undertaking, essential for the extraction of valuable insights regarding drug safety from the biomedical literature. In recent years, significant advancements have been achieved in the deep learning models on NER tasks. Nonetheless, the effectiveness of these NER techniques relies on the availability of substantial volumes of annotated data, which is labor-intensive and inefficient. Methods: This study introduces a novel approach that diverges from the conventional reliance on manually annotated data. It employs a transformer-based technique known as Positive-Unlabeled Learning (PULearning), which incorporates adaptive learning and is applied to the clinical cancer drug toxicity corpus. To improve the precision of prediction, we employ relative position embeddings within the transformer encoder. Additionally, we formulate a composite loss function that integrates two Kullback-Leibler (KL) regularizers to align with PULearning assumptions. The outcomes demonstrate that our approach attains the targeted performance for NER tasks, solely relying on unlabeled data and named entity dictionaries. Conclusion: Our model achieves an overall NER performance with an F1 of 0.819. Specifically, it attains F1 of 0.841, 0.801 and 0.815 for DRUG, CANCER, and TOXI entities, respectively. A comprehensive analysis of the results validates the effectiveness of our approach in comparison to existing PULearning methods on biomedical NER tasks. Additionally, a visualization of the associations among three identified entities is provided, offering a valuable reference for querying their interrelationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
科研通AI2S应助兮尔采纳,获得10
2秒前
2秒前
djiwisksk66应助fle采纳,获得10
3秒前
QQ发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
Kin完成签到,获得积分10
6秒前
7秒前
孙天成完成签到,获得积分20
7秒前
7秒前
Lucas应助蒲云海采纳,获得30
8秒前
是玥玥啊发布了新的文献求助10
8秒前
xuanyu完成签到,获得积分10
9秒前
丰富飞阳发布了新的文献求助20
10秒前
yznfly应助机灵冥王星采纳,获得20
10秒前
11秒前
领导范儿应助siyan156采纳,获得10
12秒前
12秒前
朴实的面包完成签到,获得积分10
13秒前
RATHER发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
17秒前
光轮2000完成签到 ,获得积分10
17秒前
xiaoyu完成签到,获得积分10
18秒前
结实的以莲完成签到,获得积分20
18秒前
宁ning发布了新的文献求助10
18秒前
19秒前
卡卡西应助黯然采纳,获得10
19秒前
19秒前
lalala发布了新的文献求助10
20秒前
N型半导体发布了新的文献求助10
20秒前
斯文败类应助张张张采纳,获得10
20秒前
21秒前
海浪发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303