Transformer-based Named Entity Recognition for Clinical Cancer Drug Toxicity by Positive-unlabeled Learning and KL Regularizers

药品 药物毒性 命名实体识别 变压器 毒性 计算机科学 人工智能 医学 药理学 内科学 工程类 电气工程 电压 系统工程 任务(项目管理)
作者
Weixin Xie,Jiayu Xu,Chengkui Zhao,Jin Li,Shuangze Han,Tianyu Shao,Limei Wang,Weixing Feng
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (8): 738-751
标识
DOI:10.2174/0115748936278299231213045441
摘要

Background: With increasing rates of polypharmacy, the vigilant surveillance of clinical drug toxicity has emerged as an important With increasing rates of polypharmacy, the vigilant surveillance of clinical drug toxicity has emerged as an important concern. Named Entity Recognition (NER) stands as an indispensable undertaking, essential for the extraction of valuable insights regarding drug safety from the biomedical literature. In recent years, significant advancements have been achieved in the deep learning models on NER tasks. Nonetheless, the effectiveness of these NER techniques relies on the availability of substantial volumes of annotated data, which is labor-intensive and inefficient. Methods: This study introduces a novel approach that diverges from the conventional reliance on manually annotated data. It employs a transformer-based technique known as Positive-Unlabeled Learning (PULearning), which incorporates adaptive learning and is applied to the clinical cancer drug toxicity corpus. To improve the precision of prediction, we employ relative position embeddings within the transformer encoder. Additionally, we formulate a composite loss function that integrates two Kullback-Leibler (KL) regularizers to align with PULearning assumptions. The outcomes demonstrate that our approach attains the targeted performance for NER tasks, solely relying on unlabeled data and named entity dictionaries. Conclusion: Our model achieves an overall NER performance with an F1 of 0.819. Specifically, it attains F1 of 0.841, 0.801 and 0.815 for DRUG, CANCER, and TOXI entities, respectively. A comprehensive analysis of the results validates the effectiveness of our approach in comparison to existing PULearning methods on biomedical NER tasks. Additionally, a visualization of the associations among three identified entities is provided, offering a valuable reference for querying their interrelationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Martinsoar发布了新的文献求助10
1秒前
2秒前
会飞的鱼完成签到,获得积分10
2秒前
3秒前
4秒前
Zero完成签到,获得积分10
6秒前
香蕉觅云应助哈哈2022采纳,获得10
7秒前
沉静青旋发布了新的文献求助10
9秒前
10秒前
机智的紫丝完成签到,获得积分10
10秒前
janie完成签到,获得积分10
10秒前
11秒前
11秒前
轩xuan发布了新的文献求助10
15秒前
干净的人达完成签到 ,获得积分10
15秒前
loulan完成签到,获得积分10
21秒前
傅宛白完成签到,获得积分10
22秒前
高高定帮完成签到,获得积分10
23秒前
orixero应助十一采纳,获得10
23秒前
ygg完成签到,获得积分10
23秒前
federish完成签到 ,获得积分10
26秒前
轩xuan完成签到,获得积分20
28秒前
山橘月完成签到,获得积分10
32秒前
jiayouYi完成签到,获得积分10
34秒前
完美世界应助quanjia采纳,获得10
35秒前
科研通AI2S应助darmy采纳,获得10
35秒前
35秒前
36秒前
刘佳完成签到 ,获得积分10
38秒前
萧水白应助追梦大鹏采纳,获得20
40秒前
Flyzhang完成签到,获得积分10
41秒前
刘相君完成签到 ,获得积分10
41秒前
Hello应助dandelionshun采纳,获得10
41秒前
哈哈2022发布了新的文献求助10
42秒前
思源应助戈壁滩的鱼采纳,获得10
44秒前
自由初夏发布了新的文献求助20
48秒前
48秒前
Aoren完成签到,获得积分10
49秒前
快快跑咯发布了新的文献求助10
51秒前
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023