A rapid method for identification of Lanxangia tsaoko origin and fruit shape: FT‐NIR combined with chemometrics and image recognition

化学计量学 主成分分析 预处理器 模式识别(心理学) 支持向量机 线性判别分析 偏最小二乘回归 人工智能 特征提取 数学 计算机科学 统计 机器学习
作者
Gang He,Shaobing Yang,Yuanzhong Wang
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (4): 2316-2331 被引量:1
标识
DOI:10.1111/1750-3841.16989
摘要

Abstract Lanxangia tsaoko ’s accurate classifications of different origins and fruit shapes are significant for research in L. tsaoko difference between origin and species as well as for variety breeding, cultivation, and market management. In this work, Fourier transform‐near infrared (FT‐NIR) spectroscopy was transformed into two‐dimensional and three‐dimensional correlation spectroscopies to further investigate the spectral characteristics of L. tsaoko . Before building the classification model, the raw FT‐NIR spectra were preprocessed using multiplicative scatter correction and second derivative, whereas principal component analysis, successive projections algorithm, and competitive adaptive reweighted sampling were used for spectral feature variable extraction. Then combined with partial least squares‐discriminant analysis (PLS‐DA), support vector machine (SVM), decision tree, and residual network (ResNet) models for origin and fruit shape discriminated in L. tsaoko . The PLS‐DA and SVM models can achieve 100% classification in origin classification, but what is difficult to avoid is the complex process of model optimization. The ResNet image recognition model classifies the origin and shape of L. tsaoko with 100% accuracy, and without the need for complex preprocessing and feature extraction, the model facilitates the realization of fast, accurate, and efficient identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助wangyanwxy采纳,获得10
1秒前
36456657应助豆dou采纳,获得10
1秒前
2秒前
2秒前
3秒前
buno应助jy采纳,获得10
4秒前
paparazzi221发布了新的文献求助10
5秒前
田生完成签到,获得积分10
5秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
5秒前
5秒前
爆米花应助towerman采纳,获得10
6秒前
羊笨笨完成签到 ,获得积分10
6秒前
7秒前
光亮芷天完成签到,获得积分10
7秒前
7秒前
8秒前
粗犷的问夏完成签到,获得积分10
9秒前
知行合一完成签到 ,获得积分10
10秒前
10秒前
11秒前
李爱国应助晨曦采纳,获得10
12秒前
0128lun发布了新的文献求助10
12秒前
phd发布了新的文献求助10
13秒前
君无名完成签到 ,获得积分10
13秒前
经年发布了新的文献求助10
13秒前
QXR完成签到,获得积分10
14秒前
豆dou完成签到,获得积分10
14秒前
Dddd发布了新的文献求助10
14秒前
HCl完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
Hollen完成签到 ,获得积分10
18秒前
慕青应助学术蠕虫采纳,获得10
19秒前
19秒前
叶子发布了新的文献求助10
20秒前
orangel完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808