亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised feature selection by learning exponential weights

特征(语言学) 特征选择 加权 人工智能 计算机科学 模式识别(心理学) 光学(聚焦) 特征学习 无监督学习 子空间拓扑 机器学习 最小冗余特征选择 数据挖掘 哲学 放射科 物理 光学 医学 语言学
作者
Chenchen Wang,Jun Wang,Zhichen Gu,Jinmao Wei,Jian Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110183-110183 被引量:7
标识
DOI:10.1016/j.patcog.2023.110183
摘要

Unsupervised feature selection has gained considerable attention for extracting valuable features from unlabeled datasets. Existing approaches typically rely on sparse mapping matrices to preserve local neighborhood structures. However, this strategy favors large-weight features, potentially overlooking smaller yet valuable ones and distorting data distribution and feature structure. Besides, some methods focus on local structure information, failing to explore global information. To address these limitations, we introduce an exponential weighting mechanism to induce a rational feature distribution and explore data structure in the feature subspace. Specifically, we propose a unified framework incorporating local structure learning and exponentially weighted sparse regression for optimal feature combinations, preserving global and local information. Experimental results demonstrate the superiority of our approach over existing unsupervised feature selection methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
21秒前
24秒前
lu发布了新的文献求助10
26秒前
Zhaoyuemeng完成签到 ,获得积分10
36秒前
白华苍松发布了新的文献求助20
37秒前
FashionBoy应助lu采纳,获得10
38秒前
40秒前
43秒前
顾矜应助在南方看北方采纳,获得10
47秒前
50秒前
55秒前
59秒前
1分钟前
桐桐应助Clem采纳,获得10
1分钟前
1分钟前
英俊的铭应助大半个菜鸟采纳,获得10
1分钟前
八八完成签到,获得积分10
1分钟前
Akim应助科研进化中采纳,获得10
1分钟前
1分钟前
斯文败类应助xun采纳,获得10
2分钟前
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
2分钟前
Clem发布了新的文献求助10
2分钟前
2分钟前
2分钟前
华仔应助xun采纳,获得10
3分钟前
3分钟前
CodeCraft应助在南方看北方采纳,获得10
3分钟前
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
4分钟前
幽默的太阳完成签到 ,获得积分10
4分钟前
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
4分钟前
共享精神应助科研进化中采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529195
求助须知:如何正确求助?哪些是违规求助? 4618365
关于积分的说明 14562521
捐赠科研通 4557360
什么是DOI,文献DOI怎么找? 2497456
邀请新用户注册赠送积分活动 1477693
关于科研通互助平台的介绍 1449117