Group efficiency and individual fairness tradeoff in making wise decisions

群体决策 背景(考古学) 不公平厌恶 感知 政府(语言学) 过程(计算) 群(周期表) 微观经济学 计算机科学 社会心理学 心理学 经济 数学 不平等 生物 操作系统 数学分析 哲学 古生物学 神经科学 有机化学 化学 语言学
作者
Ming Tang,Huchang Liao
出处
期刊:Omega [Elsevier]
卷期号:124: 103015-103015 被引量:3
标识
DOI:10.1016/j.omega.2023.103015
摘要

In group decision making, the consensus model with minimum cost has been researched with the aim of improving group efficiency and saving resources. However, one limitation of the minimum cost consensus model is that the reach of consensus is usually at the expense of some group members. We consider two issues that we see as keys in group consensus: efficiency and fairness. We propose the price of fairness in the opinion revision process and give two kinds of fairness schemes. According to the individual's perception of inequity, we introduce inequity aversion parameters and classify experts into two types: experts with non-cooperative behaviors and with altruistic behaviors. Experts with altruistic behaviors will be allowed to contribute more than the recommended number of modifications. Then, we discuss how to achieve the tradeoff between efficiency and fairness. Furthermore, with the rapid development of social media, cloud, and e-government platforms, collective intelligence (CI), i.e., groups of individuals doing things collectively that seem intelligent, has been a hot topic. We expand our work to a crowd context with many individuals. We investigate how the opinion revision process and fairness schemes can influence the emergence of CI. Results suggest that the proportional fairness and max-min fairness have similar performance in stimulating CI. Moreover, the improvement of group accuracy is mainly related to two factors: the group consensus level of initial opinions and the relative distance between group aggregated opinion and the ground truth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助Ganann采纳,获得10
刚刚
edtaa发布了新的文献求助10
刚刚
SUNYAOSUNYAO发布了新的文献求助10
刚刚
杜祖盛发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
格拉希尔完成签到,获得积分10
1秒前
yeahokk发布了新的文献求助10
2秒前
慕青应助yy采纳,获得10
2秒前
yy发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
jinke发布了新的文献求助10
2秒前
3秒前
L山间葱完成签到,获得积分20
3秒前
shan发布了新的文献求助10
3秒前
3秒前
3秒前
555发布了新的文献求助10
4秒前
浪子应助专注的书白采纳,获得10
4秒前
4秒前
完美世界应助盛夏如花采纳,获得10
4秒前
5秒前
江一山完成签到,获得积分20
5秒前
5秒前
Dyson Hou完成签到,获得积分10
6秒前
认真初之完成签到,获得积分10
6秒前
6秒前
夏沫完成签到,获得积分10
6秒前
崔楠发布了新的文献求助10
6秒前
Owen应助JJ采纳,获得10
6秒前
小冉发布了新的文献求助10
6秒前
哈皮完成签到,获得积分10
7秒前
7秒前
7秒前
所所应助shan采纳,获得10
7秒前
懒人发布了新的文献求助20
7秒前
你好发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836