MSFF-MA-DDI: Multi-Source Feature Fusion with Multiple Attention blocks for predicting Drug–Drug Interaction events

药品 特征(语言学) 块(置换群论) 计算机科学 事件(粒子物理) 编码 嵌入 相似性(几何) 数据挖掘 药物靶点 人工智能 机器学习 药理学 医学 化学 图像(数学) 哲学 物理 几何学 基因 量子力学 生物化学 语言学 数学
作者
Qi Jin,Jiang Xie,Dingkai Huang,Chang Zhao,Hongjian He
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:108: 108001-108001 被引量:9
标识
DOI:10.1016/j.compbiolchem.2023.108001
摘要

The interaction of multiple drugs could lead to severe events, which cause medical injuries and expenses. Accurate prediction of drug–drug interaction (DDI) events can help clinicians make effective decisions and establish appropriate therapy programs. However, there exist two issues worthy of further consideration. (i) The global features of drug molecules should be paid attention to, rather than just their local characteristics. (ii) The fusion of multi-source features should also be studied to capture the comprehensive features of the drug. This study designs a Multi-Source Feature Fusion framework with Multiple Attention blocks named MSFF-MA-DDI that utilizes multimodal data for DDI event prediction. MSFF-MA-DDI can (i) encode global correlations between long-distance atoms in drug molecular sequences by a self-attention layer based on a position embedding block and (ii) fuse drug sequence features and heterogeneous features (chemical substructure, target, and enzyme) through a multi-head attention block to better represent the features of drugs. Experiments on real-world datasets show that MSFF-MA-DDI can achieve performance that is close to or even better than state-of-the-art models. Especially in cold start scenarios, the model can achieve the best performance. The effectiveness of the model is also supported by the case study on nervous system drugs. The source codes and data are available at https://github.com/BioCenter-SHU/MSFF-MA-DDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
尉迟希望举报求助违规成功
1秒前
杀出个黎明举报求助违规成功
1秒前
CAOHOU举报求助违规成功
1秒前
1秒前
打打应助古德方采纳,获得10
2秒前
健壮凡桃发布了新的文献求助10
4秒前
若杉发布了新的文献求助10
4秒前
CipherSage应助贪玩绮山采纳,获得10
4秒前
5秒前
cs完成签到,获得积分10
5秒前
5秒前
5秒前
Shannon发布了新的文献求助10
6秒前
sun完成签到,获得积分10
6秒前
yzm完成签到,获得积分10
6秒前
6秒前
zhhua完成签到,获得积分10
7秒前
红豆521完成签到,获得积分20
7秒前
7秒前
在水一方应助曾蕙茹采纳,获得10
8秒前
细心的日记本完成签到,获得积分10
9秒前
浅苏完成签到,获得积分10
9秒前
Orange应助小宋采纳,获得10
9秒前
xff完成签到 ,获得积分10
9秒前
曾经不言发布了新的文献求助10
10秒前
10秒前
缓慢的书蕾关注了科研通微信公众号
10秒前
10秒前
10秒前
scz发布了新的文献求助10
10秒前
Islet发布了新的文献求助10
11秒前
11秒前
11秒前
情怀应助糟糕的铁锤采纳,获得10
12秒前
tingalan应助若杉采纳,获得10
12秒前
汉堡包应助红豆521采纳,获得10
12秒前
12秒前
Meron发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148