MSFF-MA-DDI: Multi-Source Feature Fusion with Multiple Attention blocks for predicting Drug–Drug Interaction events

药品 特征(语言学) 块(置换群论) 计算机科学 事件(粒子物理) 编码 嵌入 相似性(几何) 数据挖掘 药物靶点 人工智能 机器学习 药理学 医学 化学 图像(数学) 哲学 物理 几何学 基因 量子力学 生物化学 语言学 数学
作者
Qi Jin,Jiang Xie,Dingkai Huang,Chang Zhao,Hongjian He
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:108: 108001-108001 被引量:9
标识
DOI:10.1016/j.compbiolchem.2023.108001
摘要

The interaction of multiple drugs could lead to severe events, which cause medical injuries and expenses. Accurate prediction of drug–drug interaction (DDI) events can help clinicians make effective decisions and establish appropriate therapy programs. However, there exist two issues worthy of further consideration. (i) The global features of drug molecules should be paid attention to, rather than just their local characteristics. (ii) The fusion of multi-source features should also be studied to capture the comprehensive features of the drug. This study designs a Multi-Source Feature Fusion framework with Multiple Attention blocks named MSFF-MA-DDI that utilizes multimodal data for DDI event prediction. MSFF-MA-DDI can (i) encode global correlations between long-distance atoms in drug molecular sequences by a self-attention layer based on a position embedding block and (ii) fuse drug sequence features and heterogeneous features (chemical substructure, target, and enzyme) through a multi-head attention block to better represent the features of drugs. Experiments on real-world datasets show that MSFF-MA-DDI can achieve performance that is close to or even better than state-of-the-art models. Especially in cold start scenarios, the model can achieve the best performance. The effectiveness of the model is also supported by the case study on nervous system drugs. The source codes and data are available at https://github.com/BioCenter-SHU/MSFF-MA-DDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ivy采纳,获得10
1秒前
1秒前
3秒前
情怀应助Mok采纳,获得10
5秒前
6秒前
7秒前
xun完成签到,获得积分10
8秒前
我是科研狗完成签到,获得积分10
9秒前
1280065188完成签到,获得积分20
10秒前
爆米花应助wen采纳,获得10
10秒前
纪予舟发布了新的文献求助10
10秒前
10秒前
10秒前
qingzhiwu完成签到,获得积分10
10秒前
11秒前
psylan应助impending采纳,获得10
11秒前
yyanxuemin919发布了新的文献求助10
13秒前
oon完成签到,获得积分10
14秒前
15秒前
15秒前
小熊完成签到,获得积分10
15秒前
15秒前
大模型应助喜悦的如娆采纳,获得10
16秒前
pluto应助yyy采纳,获得10
16秒前
晨丶完成签到,获得积分10
16秒前
纯真万言完成签到,获得积分10
17秒前
奕苼完成签到 ,获得积分10
17秒前
Owen应助甜蜜弱采纳,获得10
17秒前
susan完成签到,获得积分10
18秒前
Mok发布了新的文献求助10
20秒前
一棵树完成签到,获得积分10
21秒前
22秒前
24秒前
健忘可愁应助疯狂的聋五采纳,获得20
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
xzy998应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
27秒前
今后应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841