亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MSFF-MA-DDI: Multi-Source Feature Fusion with Multiple Attention blocks for predicting Drug–Drug Interaction events

药品 特征(语言学) 块(置换群论) 计算机科学 事件(粒子物理) 编码 嵌入 相似性(几何) 数据挖掘 药物靶点 人工智能 机器学习 药理学 医学 化学 图像(数学) 哲学 物理 几何学 基因 量子力学 生物化学 语言学 数学
作者
Qi Jin,Jiang Xie,Dingkai Huang,Chang Zhao,Hongjian He
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:108: 108001-108001 被引量:9
标识
DOI:10.1016/j.compbiolchem.2023.108001
摘要

The interaction of multiple drugs could lead to severe events, which cause medical injuries and expenses. Accurate prediction of drug–drug interaction (DDI) events can help clinicians make effective decisions and establish appropriate therapy programs. However, there exist two issues worthy of further consideration. (i) The global features of drug molecules should be paid attention to, rather than just their local characteristics. (ii) The fusion of multi-source features should also be studied to capture the comprehensive features of the drug. This study designs a Multi-Source Feature Fusion framework with Multiple Attention blocks named MSFF-MA-DDI that utilizes multimodal data for DDI event prediction. MSFF-MA-DDI can (i) encode global correlations between long-distance atoms in drug molecular sequences by a self-attention layer based on a position embedding block and (ii) fuse drug sequence features and heterogeneous features (chemical substructure, target, and enzyme) through a multi-head attention block to better represent the features of drugs. Experiments on real-world datasets show that MSFF-MA-DDI can achieve performance that is close to or even better than state-of-the-art models. Especially in cold start scenarios, the model can achieve the best performance. The effectiveness of the model is also supported by the case study on nervous system drugs. The source codes and data are available at https://github.com/BioCenter-SHU/MSFF-MA-DDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳言2009完成签到 ,获得积分10
刚刚
16秒前
20秒前
葡萄酸奶冻发布了新的文献求助150
27秒前
cc完成签到,获得积分10
28秒前
JamesPei应助葡萄酸奶冻采纳,获得10
37秒前
儒雅小馒头完成签到,获得积分10
38秒前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
临子完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
陈尹蓝完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
化学把我害惨了完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
lngenuo发布了新的文献求助30
3分钟前
4分钟前
haprier完成签到 ,获得积分10
4分钟前
今后应助寒冷的初彤采纳,获得10
4分钟前
4分钟前
冰姗完成签到,获得积分10
4分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714892
求助须知:如何正确求助?哪些是违规求助? 5227992
关于积分的说明 15273799
捐赠科研通 4866059
什么是DOI,文献DOI怎么找? 2612635
邀请新用户注册赠送积分活动 1562805
关于科研通互助平台的介绍 1520091