KI-MAG: A knowledge-infused abstractive question answering system in medical domain

计算机科学 正确性 一般化 人工智能 答疑 自然语言处理 背景(考古学) 领域(数学分析) 领域知识 发电机(电路理论) 程序设计语言 数学 数学分析 古生物学 功率(物理) 物理 量子力学 生物
作者
Aizan Zafar,Sovan Kumar Sahoo,Harsh Bhardawaj,Amitava Das,Asif Ekbal
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:571: 127141-127141 被引量:11
标识
DOI:10.1016/j.neucom.2023.127141
摘要

Abstractive question-answering (QA) has emerged as a prominent area in Natural Language Processing (NLP) due to its ability to produce concise and human-like responses, particularly with the advancement of Large Language Models. Despite its potential, abstractive QA suffers from challenges like the need for extensive training data and the generation of incorrect entities and out-of-context words in the responses. In safety-critical domains like medical and clinical settings, such issues are unacceptable and may compromise the accuracy and reliability of generated answers. We proposed KI-MAG (Knowledge-Infused Medical Abstractive Generator) model, a novel Knowledge-Infused Abstractive Question Answering System specifically designed for the medical domain. KI-MAG aims to address the aforementioned limitations and enhance the correctness of generated responses while mitigating data sparsity concerns. The KI-MAG system produces more precise and informative answers by incorporating relevant medical entities into the model’s generation process. Furthermore, we adopt a synthetic data generation approach using question-answer pairs to overcome the challenge of limited training data in the medical domain. These synthetic pairs augment the original dataset, resulting in better model generalization and improved performance. Our extensive experimental evaluations demonstrate the effectiveness of the KI-MAG system. Compared to traditional abstractive QA models, our approach exhibits a substantial increase of approximately 15% in Blue-1, Blue-2, Blue-3, and Blue-4 scores, indicating a remarkable improvement in answer accuracy and overall quality of responses. Overall, our Knowledge-Infused Abstractive Question Answering System in the Medical Domain (KI-MAG) presents a promising solution to enhance the performance and reliability of abstractive QA models in safety-critical medical applications where precision and correctness of answers are of utmost importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
269360完成签到 ,获得积分10
1秒前
皮皮完成签到 ,获得积分10
10秒前
无一完成签到 ,获得积分0
11秒前
shining完成签到,获得积分10
12秒前
VirSnorlax完成签到,获得积分10
12秒前
Aqua完成签到,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
16秒前
Nick应助科研通管家采纳,获得30
16秒前
华仔应助科研通管家采纳,获得10
16秒前
研友_ngqjz8完成签到,获得积分10
17秒前
研友_Z1eDgZ完成签到,获得积分10
17秒前
傲娇的涵菱完成签到,获得积分10
19秒前
Negan完成签到,获得积分10
19秒前
hitzwd完成签到,获得积分10
19秒前
Jiayi完成签到 ,获得积分10
21秒前
WSYang完成签到,获得积分10
21秒前
朴素的紫安完成签到 ,获得积分10
25秒前
灵巧的十八完成签到 ,获得积分10
25秒前
ivyjianjie完成签到,获得积分10
27秒前
青牛完成签到 ,获得积分10
28秒前
hyf完成签到 ,获得积分10
29秒前
等风来完成签到 ,获得积分10
30秒前
科研狗完成签到 ,获得积分10
32秒前
拼搏的金针菇完成签到 ,获得积分10
35秒前
笨笨梦松完成签到,获得积分10
36秒前
春山完成签到 ,获得积分10
41秒前
小小鱼完成签到 ,获得积分10
44秒前
tca2204完成签到,获得积分10
45秒前
灰玲牛应助王勇采纳,获得10
50秒前
sherry221完成签到,获得积分10
51秒前
包容的若风完成签到 ,获得积分10
51秒前
加勒比海带丝完成签到,获得积分10
55秒前
smile完成签到,获得积分10
55秒前
星辰大海应助adfadf采纳,获得10
55秒前
独摇之完成签到,获得积分10
56秒前
58秒前
李薇完成签到,获得积分10
1分钟前
早早完成签到,获得积分10
1分钟前
小黑完成签到,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511036
关于积分的说明 11156066
捐赠科研通 3245497
什么是DOI,文献DOI怎么找? 1793093
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255