KI-MAG: A knowledge-infused abstractive question answering system in medical domain

计算机科学 正确性 一般化 人工智能 答疑 自然语言处理 背景(考古学) 领域(数学分析) 领域知识 发电机(电路理论) 程序设计语言 数学 数学分析 古生物学 功率(物理) 物理 量子力学 生物
作者
Aizan Zafar,Sovan Kumar Sahoo,Harsh Bhardawaj,Amitava Das,Asif Ekbal
出处
期刊:Neurocomputing [Elsevier]
卷期号:571: 127141-127141 被引量:11
标识
DOI:10.1016/j.neucom.2023.127141
摘要

Abstractive question-answering (QA) has emerged as a prominent area in Natural Language Processing (NLP) due to its ability to produce concise and human-like responses, particularly with the advancement of Large Language Models. Despite its potential, abstractive QA suffers from challenges like the need for extensive training data and the generation of incorrect entities and out-of-context words in the responses. In safety-critical domains like medical and clinical settings, such issues are unacceptable and may compromise the accuracy and reliability of generated answers. We proposed KI-MAG (Knowledge-Infused Medical Abstractive Generator) model, a novel Knowledge-Infused Abstractive Question Answering System specifically designed for the medical domain. KI-MAG aims to address the aforementioned limitations and enhance the correctness of generated responses while mitigating data sparsity concerns. The KI-MAG system produces more precise and informative answers by incorporating relevant medical entities into the model’s generation process. Furthermore, we adopt a synthetic data generation approach using question-answer pairs to overcome the challenge of limited training data in the medical domain. These synthetic pairs augment the original dataset, resulting in better model generalization and improved performance. Our extensive experimental evaluations demonstrate the effectiveness of the KI-MAG system. Compared to traditional abstractive QA models, our approach exhibits a substantial increase of approximately 15% in Blue-1, Blue-2, Blue-3, and Blue-4 scores, indicating a remarkable improvement in answer accuracy and overall quality of responses. Overall, our Knowledge-Infused Abstractive Question Answering System in the Medical Domain (KI-MAG) presents a promising solution to enhance the performance and reliability of abstractive QA models in safety-critical medical applications where precision and correctness of answers are of utmost importance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栀初完成签到,获得积分10
刚刚
LT发布了新的文献求助10
1秒前
1秒前
2秒前
热心市民余先生完成签到,获得积分10
2秒前
乐乐应助夕荀采纳,获得10
3秒前
无限小霜完成签到,获得积分10
3秒前
DreamMaker应助LV采纳,获得10
3秒前
星辰大海应助LV采纳,获得30
3秒前
3秒前
赘婿应助酥酥脆采纳,获得10
4秒前
哇塞爹发布了新的文献求助10
4秒前
打打应助扬子采纳,获得10
4秒前
cocobear完成签到 ,获得积分10
5秒前
Lucas应助Xide采纳,获得30
5秒前
5秒前
李佳楠完成签到,获得积分20
5秒前
ggp完成签到,获得积分0
5秒前
自行车v完成签到,获得积分10
5秒前
5秒前
hhhh完成签到 ,获得积分10
6秒前
早川木槿完成签到,获得积分10
6秒前
Kauio完成签到,获得积分10
7秒前
aaabbb发布了新的文献求助10
7秒前
研友_VZG7GZ应助Daisy采纳,获得10
7秒前
缥缈书本完成签到 ,获得积分10
7秒前
obto完成签到,获得积分20
7秒前
campus完成签到,获得积分10
7秒前
LT完成签到,获得积分10
8秒前
JamesPei应助粱乘风采纳,获得10
8秒前
夏竟添完成签到,获得积分10
8秒前
AA18236931952发布了新的文献求助10
8秒前
murmur完成签到,获得积分10
8秒前
李佳楠发布了新的文献求助10
8秒前
小包完成签到,获得积分10
9秒前
9秒前
哇哇哇完成签到 ,获得积分10
9秒前
寒冷茈完成签到,获得积分20
9秒前
WW完成签到,获得积分10
10秒前
满锅发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005