Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain-computer interface

脑-机接口 冲程(发动机) 学习迁移 运动表象 人工智能 深度学习 康复 计算机科学 脑电图 物理医学与康复 机器学习 医学 物理疗法 机械工程 精神科 工程类
作者
Aarthy Nagarajan,Neethu Robinson,Kai Keng Ang,Karen Sui Geok Chua,Effie Chew,Cuntai Guan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad152f
摘要

Abstract Objective: Motor imagery (MI) brain-computer interfaces (BCI) based on electroencephalogram (EEG) have been developed primarily for stroke rehabilitation, however, due to limited stroke data, current deep learning methods for cross-subject classification rely on healthy data. This study aims to assess the feasibility of applying MI-BCI models pre-trained using data from healthy individuals to detect MI in stroke patients. Approach: We introduce a new transfer learning approach where features from two-class MI data of healthy individuals are used to detect MI in stroke patients. We compare the results of the proposed method with those obtained from analyses within stroke data. Experiments were conducted using Deep ConvNet and state-of-the-art subject-specific machine learning MI classifiers, evaluated on OpenBMI two-class MI-EEG data from healthy subjects and two-class MI versus rest data from stroke patients. Main Results: Results of our study indicate that through domain adaptation of a model pre-trained using healthy subjects’ data, an average MI detection accuracy of 71.15% (±12.46%) can be achieved across 71 stroke patients. We demonstrate that the accuracy of the pre-trained model increased by 18.15% after transfer learning (p < 0.001). Additionally, the proposed transfer learning method outperforms the subject-specific results achieved by Deep ConvNet and FBCSP, with significant enhancements of 7.64% (p < 0.001) and 5.55% (p < 0.001) in performance, respectively. Notably, the healthy-to-stroke transfer learning approach achieved similar performance to stroke-to-stroke transfer learning, with no significant difference (p > 0.05). Explainable AI analyses using transfer models determined channel relevance patterns that indicate contributions from the bilateral motor, frontal, and parietal regions of the cortex towards MI detection in stroke patients. Significance: Transfer learning from healthy to stroke can enhance the clinical use of BCI algorithms by overcoming the challenge of insufficient clinical data for optimal training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何三岁完成签到,获得积分10
刚刚
123456发布了新的文献求助10
2秒前
乐乐应助小鱼采纳,获得10
2秒前
鲤鱼寒荷完成签到,获得积分10
3秒前
swing发布了新的文献求助10
3秒前
xiao发布了新的文献求助10
4秒前
6秒前
小琪猪完成签到,获得积分10
6秒前
丘比特应助瑞瑞采纳,获得10
8秒前
天天快乐应助zfy采纳,获得10
9秒前
9秒前
9秒前
踏实半雪发布了新的文献求助10
11秒前
JiaqiDijon发布了新的文献求助10
11秒前
嘟嘟完成签到 ,获得积分20
11秒前
12秒前
12秒前
13秒前
13秒前
嘟嘟发布了新的文献求助10
14秒前
PSJH完成签到,获得积分10
14秒前
15秒前
beibeibaobao发布了新的文献求助10
16秒前
fyl发布了新的文献求助10
17秒前
17秒前
Yfreya发布了新的文献求助10
17秒前
17秒前
FBI汪宁发布了新的文献求助30
18秒前
19秒前
GuSiwen完成签到,获得积分10
19秒前
19秒前
小鱼完成签到,获得积分10
20秒前
CDQ发布了新的文献求助10
20秒前
21秒前
杳鸢应助lourahan采纳,获得10
21秒前
杳鸢应助lourahan采纳,获得10
21秒前
杳鸢应助lourahan采纳,获得10
21秒前
22秒前
可爱的函函应助大力鳗鱼采纳,获得10
22秒前
白樱恋曲发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943