Conductive interpenetrating network organohydrogels of gellan gum/polypyrrole with weather-tolerance, piezoresistive sensing and shape-memory capability
To develop ecofriendly multifunctional gel materials for sustainable flexible electronic devices, composite organohydrogels of gellan gum (GG) and polypyrrole (PPy) with an interpenetrating network structure (IPN-GG/PPy organohydrogels) were developed first time, through fabrication of GG organohydrogels followed by in-situ oxidation polymerization of pyrrole inside. Combination of water with glycerol can not only impart environment-stability to GG hydrogels but promote the mechanics remarkably, with the compressive strength amplified by 1250 % from 0.02 to 0.27 MPa. Incorporation of PPy confers electrical conductivity to the GG organohydrogel as well as promoting the mechanical performance further. The maximum conductivity of the IPN-GG/PPy organohydrogels reached 1.2 mS/cm at 25 °C, and retained at 0.6 mS/cm under −20 °C and 0.56 mS/cm after 7 days' exposure in 25 °C and 60 % RH. The compression strength of that with the maximum conductivity increases by 170 % from 0.27 to 0.73 MPa. The excellent conductivity and mechanical properties endow the IPN-GG/PPy organohydrogels good piezoresistive strain/pressure sensing behavior. Moreover, the thermo-reversible GG network bestows them shape-memory capability. The multifunctionality and intrinsic eco-friendliness is favorable for sustainable application in fields such as flexible electronics, soft robotics and artificial intelligence, competent in motion recognition, physiological signal monitoring, intelligent actuation