亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient framework for lesion segmentation in ultrasound images using global adversarial learning and region-invariant loss

分割 人工智能 计算机科学 鉴别器 深度学习 模式识别(心理学) 计算机视觉 不变(物理) 图像分割 乳腺超声检查 乳腺摄影术 数学 医学 数学物理 电信 癌症 探测器 乳腺癌 内科学
作者
Van Manh,Xiaohong Jia,Wufeng Xue,Wenwen Xu,Zihan Mei,Yijie Dong,JianQiao Zhou,Ruobing Huang,Dong Ni
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108137-108137 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108137
摘要

Lesion segmentation in ultrasound images is an essential yet challenging step for early evaluation and diagnosis of cancers. In recent years, many automatic CNN-based methods have been proposed to assist this task. However, most modern approaches often lack capturing long-range dependencies and prior information making it difficult to identify the lesions with unfixed shapes, sizes, locations, and textures. To address this, we present a novel lesion segmentation framework that guides the model to learn the global information about lesion characteristics and invariant features (e.g., morphological features) of lesions to improve the segmentation in ultrasound images. Specifically, the segmentation model is guided to learn the characteristics of lesions from the global maps using an adversarial learning scheme with a self-attention-based discriminator. We argue that under such a lesion characteristics-based guidance mechanism, the segmentation model gets more clues about the boundaries, shapes, sizes, and positions of lesions and can produce reliable predictions. In addition, as ultrasound lesions have different textures, we embed this prior knowledge into a novel region-invariant loss to constrain the model to focus on invariant features for robust segmentation. We demonstrate our method on one in-house breast ultrasound (BUS) dataset and two public datasets (i.e., breast lesion (BUS B) and thyroid nodule from TNSCUI2020). Experimental results show that our method is specifically suitable for lesion segmentation in ultrasound images and can outperform the state-of-the-art approaches with Dice of 0.931, 0.906, and 0.876, respectively. The proposed method demonstrates that it can provide more important information about the characteristics of lesions for lesion segmentation in ultrasound images, especially for lesions with irregular shapes and small sizes. It can assist the current lesion segmentation models to better suit clinical needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沛沛完成签到,获得积分10
1秒前
Wfmmm完成签到,获得积分10
1秒前
兼听则明发布了新的文献求助10
5秒前
李爱国应助健壮慕梅采纳,获得10
8秒前
11秒前
18秒前
陆上飞发布了新的文献求助10
25秒前
Swilder完成签到 ,获得积分10
28秒前
传奇3应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
沈从云完成签到 ,获得积分10
31秒前
meimei完成签到 ,获得积分10
34秒前
无心的采萱完成签到,获得积分10
35秒前
jade完成签到,获得积分10
36秒前
陆上飞完成签到,获得积分10
36秒前
欣欣每天开开心心完成签到 ,获得积分10
37秒前
37秒前
俭朴的乐巧完成签到 ,获得积分10
44秒前
兼听则明完成签到,获得积分10
45秒前
45秒前
非典型骨质疏松完成签到,获得积分10
51秒前
阔达冰兰发布了新的文献求助10
51秒前
54秒前
两棵树完成签到,获得积分10
57秒前
xiaoleihu完成签到 ,获得积分10
1分钟前
1分钟前
眼镜胖子完成签到,获得积分10
1分钟前
粽子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
健壮慕梅发布了新的文献求助10
1分钟前
Abdurrahman完成签到,获得积分10
1分钟前
杜李欧婶儿完成签到 ,获得积分10
1分钟前
sss完成签到 ,获得积分10
1分钟前
1分钟前
xmy完成签到 ,获得积分10
1分钟前
江月年发布了新的文献求助10
1分钟前
meow完成签到 ,获得积分10
1分钟前
小袁完成签到 ,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176