亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient framework for lesion segmentation in ultrasound images using global adversarial learning and region-invariant loss

分割 人工智能 计算机科学 鉴别器 深度学习 模式识别(心理学) 计算机视觉 不变(物理) 图像分割 乳腺超声检查 乳腺摄影术 数学 医学 数学物理 电信 癌症 探测器 乳腺癌 内科学
作者
Van Manh,Xiaohong Jia,Wufeng Xue,Wenwen Xu,Zihan Mei,Yijie Dong,JianQiao Zhou,Ruobing Huang,Dong Ni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108137-108137 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108137
摘要

Lesion segmentation in ultrasound images is an essential yet challenging step for early evaluation and diagnosis of cancers. In recent years, many automatic CNN-based methods have been proposed to assist this task. However, most modern approaches often lack capturing long-range dependencies and prior information making it difficult to identify the lesions with unfixed shapes, sizes, locations, and textures. To address this, we present a novel lesion segmentation framework that guides the model to learn the global information about lesion characteristics and invariant features (e.g., morphological features) of lesions to improve the segmentation in ultrasound images. Specifically, the segmentation model is guided to learn the characteristics of lesions from the global maps using an adversarial learning scheme with a self-attention-based discriminator. We argue that under such a lesion characteristics-based guidance mechanism, the segmentation model gets more clues about the boundaries, shapes, sizes, and positions of lesions and can produce reliable predictions. In addition, as ultrasound lesions have different textures, we embed this prior knowledge into a novel region-invariant loss to constrain the model to focus on invariant features for robust segmentation. We demonstrate our method on one in-house breast ultrasound (BUS) dataset and two public datasets (i.e., breast lesion (BUS B) and thyroid nodule from TNSCUI2020). Experimental results show that our method is specifically suitable for lesion segmentation in ultrasound images and can outperform the state-of-the-art approaches with Dice of 0.931, 0.906, and 0.876, respectively. The proposed method demonstrates that it can provide more important information about the characteristics of lesions for lesion segmentation in ultrasound images, especially for lesions with irregular shapes and small sizes. It can assist the current lesion segmentation models to better suit clinical needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助小江采纳,获得10
43秒前
受伤纲完成签到 ,获得积分10
47秒前
47秒前
flyinthesky完成签到,获得积分10
48秒前
花花公子完成签到,获得积分10
54秒前
深情安青应助Cmqq采纳,获得10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
小江发布了新的文献求助10
1分钟前
yueying完成签到,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
鲤鱼笑南完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Mia发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
SciGPT应助Mia采纳,获得10
2分钟前
2分钟前
丽君发布了新的文献求助10
2分钟前
sidashu完成签到,获得积分10
2分钟前
田様应助Cmqq采纳,获得10
2分钟前
乌乌完成签到,获得积分10
2分钟前
萌仔完成签到,获得积分10
2分钟前
萌仔发布了新的文献求助10
2分钟前
Mei完成签到,获得积分10
3分钟前
3分钟前
小金完成签到,获得积分20
3分钟前
稳重的小刺猬完成签到,获得积分10
3分钟前
3分钟前
林林发布了新的文献求助10
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685512
关于积分的说明 14838542
捐赠科研通 4670527
什么是DOI,文献DOI怎么找? 2538202
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904