An efficient framework for lesion segmentation in ultrasound images using global adversarial learning and region-invariant loss

分割 人工智能 计算机科学 鉴别器 深度学习 模式识别(心理学) 计算机视觉 不变(物理) 图像分割 乳腺超声检查 乳腺摄影术 数学 医学 数学物理 电信 癌症 探测器 乳腺癌 内科学
作者
Van Manh,Xiaohong Jia,Wufeng Xue,Wenwen Xu,Zihan Mei,Yijie Dong,JianQiao Zhou,Ruobing Huang,Dong Ni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108137-108137 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108137
摘要

Lesion segmentation in ultrasound images is an essential yet challenging step for early evaluation and diagnosis of cancers. In recent years, many automatic CNN-based methods have been proposed to assist this task. However, most modern approaches often lack capturing long-range dependencies and prior information making it difficult to identify the lesions with unfixed shapes, sizes, locations, and textures. To address this, we present a novel lesion segmentation framework that guides the model to learn the global information about lesion characteristics and invariant features (e.g., morphological features) of lesions to improve the segmentation in ultrasound images. Specifically, the segmentation model is guided to learn the characteristics of lesions from the global maps using an adversarial learning scheme with a self-attention-based discriminator. We argue that under such a lesion characteristics-based guidance mechanism, the segmentation model gets more clues about the boundaries, shapes, sizes, and positions of lesions and can produce reliable predictions. In addition, as ultrasound lesions have different textures, we embed this prior knowledge into a novel region-invariant loss to constrain the model to focus on invariant features for robust segmentation. We demonstrate our method on one in-house breast ultrasound (BUS) dataset and two public datasets (i.e., breast lesion (BUS B) and thyroid nodule from TNSCUI2020). Experimental results show that our method is specifically suitable for lesion segmentation in ultrasound images and can outperform the state-of-the-art approaches with Dice of 0.931, 0.906, and 0.876, respectively. The proposed method demonstrates that it can provide more important information about the characteristics of lesions for lesion segmentation in ultrasound images, especially for lesions with irregular shapes and small sizes. It can assist the current lesion segmentation models to better suit clinical needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苑小花完成签到 ,获得积分10
刚刚
俺要发CNS发布了新的文献求助10
1秒前
JTHan发布了新的文献求助10
1秒前
拉布拉卡给拉布拉卡的求助进行了留言
1秒前
1秒前
秋星人发布了新的文献求助10
1秒前
樊远红发布了新的文献求助10
1秒前
韩笑发布了新的文献求助10
1秒前
2秒前
3秒前
崔崔完成签到,获得积分10
3秒前
qqq完成签到,获得积分20
3秒前
123完成签到 ,获得积分10
4秒前
4秒前
大漂亮发布了新的文献求助10
4秒前
阿浩完成签到,获得积分10
4秒前
陈静完成签到,获得积分10
4秒前
小蘑菇应助yyd采纳,获得10
5秒前
KT2440完成签到,获得积分10
5秒前
无极微光应助许愿采纳,获得20
5秒前
思源应助小波采纳,获得10
5秒前
xmj完成签到,获得积分10
5秒前
今后应助You采纳,获得10
5秒前
qyk完成签到,获得积分10
6秒前
研友_VZG7GZ应助小刘同学采纳,获得10
6秒前
yyyyy完成签到,获得积分10
6秒前
lebron发布了新的文献求助10
7秒前
7秒前
liu123456发布了新的文献求助10
7秒前
nation_You完成签到 ,获得积分10
8秒前
崔崔发布了新的文献求助10
8秒前
无极微光应助qqq采纳,获得20
8秒前
帅气的航完成签到,获得积分20
9秒前
jason完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
12秒前
羊羊羊完成签到,获得积分10
13秒前
浮游应助快乐小子采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512879
求助须知:如何正确求助?哪些是违规求助? 4607280
关于积分的说明 14504084
捐赠科研通 4542710
什么是DOI,文献DOI怎么找? 2489172
邀请新用户注册赠送积分活动 1471230
关于科研通互助平台的介绍 1443251