亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient framework for lesion segmentation in ultrasound images using global adversarial learning and region-invariant loss

分割 人工智能 计算机科学 鉴别器 深度学习 模式识别(心理学) 计算机视觉 不变(物理) 图像分割 乳腺超声检查 乳腺摄影术 数学 医学 内科学 癌症 探测器 乳腺癌 电信 数学物理
作者
Van Manh,Xiaohong Jia,Wufeng Xue,Wenwen Xu,Zihan Mei,Yijie Dong,JianQiao Zhou,Ruobing Huang,Dong Ni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108137-108137 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108137
摘要

Lesion segmentation in ultrasound images is an essential yet challenging step for early evaluation and diagnosis of cancers. In recent years, many automatic CNN-based methods have been proposed to assist this task. However, most modern approaches often lack capturing long-range dependencies and prior information making it difficult to identify the lesions with unfixed shapes, sizes, locations, and textures. To address this, we present a novel lesion segmentation framework that guides the model to learn the global information about lesion characteristics and invariant features (e.g., morphological features) of lesions to improve the segmentation in ultrasound images. Specifically, the segmentation model is guided to learn the characteristics of lesions from the global maps using an adversarial learning scheme with a self-attention-based discriminator. We argue that under such a lesion characteristics-based guidance mechanism, the segmentation model gets more clues about the boundaries, shapes, sizes, and positions of lesions and can produce reliable predictions. In addition, as ultrasound lesions have different textures, we embed this prior knowledge into a novel region-invariant loss to constrain the model to focus on invariant features for robust segmentation. We demonstrate our method on one in-house breast ultrasound (BUS) dataset and two public datasets (i.e., breast lesion (BUS B) and thyroid nodule from TNSCUI2020). Experimental results show that our method is specifically suitable for lesion segmentation in ultrasound images and can outperform the state-of-the-art approaches with Dice of 0.931, 0.906, and 0.876, respectively. The proposed method demonstrates that it can provide more important information about the characteristics of lesions for lesion segmentation in ultrasound images, especially for lesions with irregular shapes and small sizes. It can assist the current lesion segmentation models to better suit clinical needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助秀丽的西牛采纳,获得30
2秒前
qc完成签到,获得积分10
3秒前
4秒前
qc发布了新的文献求助10
6秒前
聆风完成签到 ,获得积分10
8秒前
wentao发布了新的文献求助10
9秒前
久久丫完成签到 ,获得积分10
13秒前
斯文败类应助wentao采纳,获得10
17秒前
阳光柚子完成签到,获得积分10
17秒前
兜里全是糖完成签到,获得积分10
20秒前
动听千山发布了新的文献求助10
23秒前
上官若男应助威武板栗采纳,获得10
25秒前
wentao完成签到,获得积分20
26秒前
29秒前
31秒前
斯文败类应助优美的诗霜采纳,获得10
32秒前
32秒前
嘻嘻哈哈应助动听千山采纳,获得10
35秒前
36秒前
鲸jing发布了新的文献求助10
37秒前
Akim应助科研通管家采纳,获得10
43秒前
大模型应助科研通管家采纳,获得30
43秒前
嘻嘻哈哈应助科研通管家采纳,获得10
43秒前
CodeCraft应助科研通管家采纳,获得10
43秒前
嘻嘻哈哈应助科研通管家采纳,获得10
43秒前
斯文败类应助科研通管家采纳,获得10
43秒前
嘻嘻哈哈应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
嘻嘻哈哈应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
44秒前
传奇3应助科研通管家采纳,获得10
44秒前
44秒前
ZXneuro完成签到,获得积分10
45秒前
48秒前
偏偏完成签到 ,获得积分10
49秒前
传奇3应助鲸jing采纳,获得10
52秒前
53秒前
54秒前
平淡如天完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301742
求助须知:如何正确求助?哪些是违规求助? 4449232
关于积分的说明 13848006
捐赠科研通 4335250
什么是DOI,文献DOI怎么找? 2380243
邀请新用户注册赠送积分活动 1375213
关于科研通互助平台的介绍 1341252