An efficient framework for lesion segmentation in ultrasound images using global adversarial learning and region-invariant loss

分割 人工智能 计算机科学 鉴别器 深度学习 模式识别(心理学) 计算机视觉 不变(物理) 图像分割 乳腺超声检查 乳腺摄影术 数学 医学 数学物理 电信 癌症 探测器 乳腺癌 内科学
作者
Van Manh,Xiaohong Jia,Wufeng Xue,Wenwen Xu,Zihan Mei,Yijie Dong,JianQiao Zhou,Ruobing Huang,Dong Ni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108137-108137 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108137
摘要

Lesion segmentation in ultrasound images is an essential yet challenging step for early evaluation and diagnosis of cancers. In recent years, many automatic CNN-based methods have been proposed to assist this task. However, most modern approaches often lack capturing long-range dependencies and prior information making it difficult to identify the lesions with unfixed shapes, sizes, locations, and textures. To address this, we present a novel lesion segmentation framework that guides the model to learn the global information about lesion characteristics and invariant features (e.g., morphological features) of lesions to improve the segmentation in ultrasound images. Specifically, the segmentation model is guided to learn the characteristics of lesions from the global maps using an adversarial learning scheme with a self-attention-based discriminator. We argue that under such a lesion characteristics-based guidance mechanism, the segmentation model gets more clues about the boundaries, shapes, sizes, and positions of lesions and can produce reliable predictions. In addition, as ultrasound lesions have different textures, we embed this prior knowledge into a novel region-invariant loss to constrain the model to focus on invariant features for robust segmentation. We demonstrate our method on one in-house breast ultrasound (BUS) dataset and two public datasets (i.e., breast lesion (BUS B) and thyroid nodule from TNSCUI2020). Experimental results show that our method is specifically suitable for lesion segmentation in ultrasound images and can outperform the state-of-the-art approaches with Dice of 0.931, 0.906, and 0.876, respectively. The proposed method demonstrates that it can provide more important information about the characteristics of lesions for lesion segmentation in ultrasound images, especially for lesions with irregular shapes and small sizes. It can assist the current lesion segmentation models to better suit clinical needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助simey采纳,获得10
1秒前
2秒前
2秒前
爆米花应助研友_LBoggn采纳,获得10
2秒前
老实验人发布了新的文献求助10
3秒前
3秒前
Man发布了新的文献求助10
3秒前
4秒前
香蕉觅云应助leslie采纳,获得10
4秒前
4秒前
五十完成签到 ,获得积分10
4秒前
4秒前
我是老大应助qiuyang采纳,获得10
5秒前
WXKennyS发布了新的文献求助10
5秒前
5秒前
epmoctzyw完成签到 ,获得积分10
5秒前
Elias完成签到 ,获得积分10
5秒前
8R60d8应助兴奋的铸海采纳,获得10
6秒前
邓凯月完成签到,获得积分10
7秒前
典雅雨旋发布了新的文献求助10
7秒前
英勇听兰完成签到 ,获得积分10
7秒前
7秒前
Hello应助北执采纳,获得10
8秒前
su发布了新的文献求助10
8秒前
忧心的碧给忧心的碧的求助进行了留言
8秒前
冰激凌UP发布了新的文献求助10
8秒前
FashionBoy应助靓丽孤容采纳,获得10
8秒前
孤鸿发布了新的文献求助10
10秒前
10秒前
青青发布了新的文献求助10
10秒前
日月归尘完成签到,获得积分10
10秒前
田様应助清澈采纳,获得10
10秒前
王威发布了新的文献求助10
11秒前
11秒前
奋斗的曼容完成签到,获得积分20
11秒前
拾起发布了新的文献求助10
12秒前
王先生发布了新的文献求助10
13秒前
霸气映之发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718