亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient framework for lesion segmentation in ultrasound images using global adversarial learning and region-invariant loss

分割 人工智能 计算机科学 鉴别器 深度学习 模式识别(心理学) 计算机视觉 不变(物理) 图像分割 乳腺超声检查 乳腺摄影术 数学 医学 数学物理 电信 癌症 探测器 乳腺癌 内科学
作者
Van Manh,Xiaohong Jia,Wufeng Xue,Wenwen Xu,Zihan Mei,Yijie Dong,JianQiao Zhou,Ruobing Huang,Dong Ni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108137-108137 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108137
摘要

Lesion segmentation in ultrasound images is an essential yet challenging step for early evaluation and diagnosis of cancers. In recent years, many automatic CNN-based methods have been proposed to assist this task. However, most modern approaches often lack capturing long-range dependencies and prior information making it difficult to identify the lesions with unfixed shapes, sizes, locations, and textures. To address this, we present a novel lesion segmentation framework that guides the model to learn the global information about lesion characteristics and invariant features (e.g., morphological features) of lesions to improve the segmentation in ultrasound images. Specifically, the segmentation model is guided to learn the characteristics of lesions from the global maps using an adversarial learning scheme with a self-attention-based discriminator. We argue that under such a lesion characteristics-based guidance mechanism, the segmentation model gets more clues about the boundaries, shapes, sizes, and positions of lesions and can produce reliable predictions. In addition, as ultrasound lesions have different textures, we embed this prior knowledge into a novel region-invariant loss to constrain the model to focus on invariant features for robust segmentation. We demonstrate our method on one in-house breast ultrasound (BUS) dataset and two public datasets (i.e., breast lesion (BUS B) and thyroid nodule from TNSCUI2020). Experimental results show that our method is specifically suitable for lesion segmentation in ultrasound images and can outperform the state-of-the-art approaches with Dice of 0.931, 0.906, and 0.876, respectively. The proposed method demonstrates that it can provide more important information about the characteristics of lesions for lesion segmentation in ultrasound images, especially for lesions with irregular shapes and small sizes. It can assist the current lesion segmentation models to better suit clinical needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
MINGMING发布了新的文献求助10
9秒前
gdpu_omics完成签到,获得积分10
10秒前
13秒前
盛夏如花发布了新的文献求助30
14秒前
啦啦啦啦发布了新的文献求助10
18秒前
20秒前
25秒前
30秒前
小马甲应助isjj采纳,获得10
34秒前
岚岚发布了新的文献求助10
35秒前
Regine完成签到 ,获得积分10
37秒前
39秒前
isjj完成签到,获得积分10
44秒前
MINGMING完成签到,获得积分10
45秒前
我是老大应助Regine采纳,获得10
46秒前
46秒前
Xhnz发布了新的文献求助10
46秒前
情怀应助啦啦啦啦采纳,获得10
47秒前
赘婿应助Re采纳,获得10
47秒前
岚岚完成签到,获得积分10
51秒前
52秒前
无花果应助盛夏如花采纳,获得10
55秒前
ding应助hyhyhyhy采纳,获得10
57秒前
Re发布了新的文献求助10
58秒前
原子发布了新的文献求助10
1分钟前
毒蝎King完成签到 ,获得积分10
1分钟前
ZXneuro完成签到,获得积分10
1分钟前
1分钟前
原子完成签到,获得积分10
1分钟前
骨科小李发布了新的文献求助10
1分钟前
遥感小虫完成签到,获得积分10
1分钟前
1分钟前
hyhyhyhy发布了新的文献求助10
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
顺心的傲柔完成签到,获得积分10
1分钟前
2分钟前
6w6发布了新的文献求助10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644619
求助须知:如何正确求助?哪些是违规求助? 4764721
关于积分的说明 15025369
捐赠科研通 4802978
什么是DOI,文献DOI怎么找? 2567787
邀请新用户注册赠送积分活动 1525410
关于科研通互助平台的介绍 1484909