Integrated entry guidance with no-fly zone constraint using reinforcement learning and predictor-corrector technique

强化学习 稳健性(进化) 趋同(经济学) 过程(计算) 计算机科学 控制理论(社会学) 人工智能 模拟 工程类 控制(管理) 生物化学 化学 经济 基因 经济增长 操作系统
作者
Yuan Gao,Rui Zhou,Jinyong Chen
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part G: Journal Of Aerospace Engineering [SAGE Publishing]
卷期号:238 (7): 728-741
标识
DOI:10.1177/09544100241236995
摘要

This paper presents an integrated entry guidance law for hypersonic glide vehicles with no-fly zone constraint. Existing methods that employ predictor-corrector technique and lateral guidance logic for both guidance and avoidance, may have limitations in response time and maneuverability when facing sudden threats, because the guidance cycle is limited by computational efficiency and the bank angle magnitude cannot be adjusted according to the urgency of the avoidance. To overcome these challenges, the proposed method divides the entry process into safe flight stages and no-fly zone avoidance stages, and introduces reinforcement learning to develop an intelligent avoidance strategy for the latter. This division reduces the complexity of the learning problem by restricting the state space and increases the applicability in the presence of multiple no-fly zones. The trained avoidance strategy can directly output continuous bank angle command through a single forward calculation, considering both guidance and avoidance requirements. This enables the full utilization of the vehicle’s maneuverability and supports a high command update frequency to effectively handle threats. Additionally, a network trained via supervised learning is employed to generate reference commands, accelerating the training convergence of reinforcement learning. Simulation results demonstrate the effectiveness of the proposed guidance law, highlighting its high computational efficiency, command stability, and robustness. Importantly, the approach offers convenience in extending to multiple no-fly zones and accommodating vast initial state spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逗逗完成签到,获得积分10
1秒前
now发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
xzy998发布了新的文献求助30
2秒前
王航完成签到,获得积分10
2秒前
2秒前
3秒前
史书完成签到,获得积分10
3秒前
golden发布了新的文献求助10
4秒前
4秒前
虚幻沛菡发布了新的文献求助10
5秒前
trans发布了新的文献求助20
5秒前
小木子发布了新的文献求助10
6秒前
6秒前
彪壮的草莓关注了科研通微信公众号
7秒前
Hanna0223关注了科研通微信公众号
7秒前
lione完成签到,获得积分10
8秒前
念初发布了新的文献求助10
8秒前
8秒前
ZhijunXiang发布了新的文献求助30
10秒前
11秒前
11秒前
鲸鱼发布了新的文献求助10
11秒前
丛玉林完成签到,获得积分10
12秒前
科研通AI6应助SEANFLY采纳,获得10
12秒前
科研通AI5应助于大本事采纳,获得10
12秒前
爬不起来发布了新的文献求助10
12秒前
ab完成签到,获得积分10
12秒前
13秒前
Orange应助wb采纳,获得10
13秒前
13秒前
万能图书馆应助xun采纳,获得30
13秒前
大个应助林周采纳,获得10
13秒前
小哈发布了新的文献求助10
13秒前
Iq完成签到,获得积分10
14秒前
嘟嘟完成签到,获得积分10
14秒前
云康肖完成签到,获得积分10
14秒前
livian完成签到,获得积分10
14秒前
热情高跟鞋完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835