Integrated entry guidance with no-fly zone constraint using reinforcement learning and predictor-corrector technique

强化学习 稳健性(进化) 趋同(经济学) 过程(计算) 计算机科学 控制理论(社会学) 人工智能 模拟 工程类 控制(管理) 生物化学 化学 经济 基因 经济增长 操作系统
作者
Yuan Gao,Rui Zhou,Jinyong Chen
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part G: Journal Of Aerospace Engineering [SAGE Publishing]
卷期号:238 (7): 728-741
标识
DOI:10.1177/09544100241236995
摘要

This paper presents an integrated entry guidance law for hypersonic glide vehicles with no-fly zone constraint. Existing methods that employ predictor-corrector technique and lateral guidance logic for both guidance and avoidance, may have limitations in response time and maneuverability when facing sudden threats, because the guidance cycle is limited by computational efficiency and the bank angle magnitude cannot be adjusted according to the urgency of the avoidance. To overcome these challenges, the proposed method divides the entry process into safe flight stages and no-fly zone avoidance stages, and introduces reinforcement learning to develop an intelligent avoidance strategy for the latter. This division reduces the complexity of the learning problem by restricting the state space and increases the applicability in the presence of multiple no-fly zones. The trained avoidance strategy can directly output continuous bank angle command through a single forward calculation, considering both guidance and avoidance requirements. This enables the full utilization of the vehicle’s maneuverability and supports a high command update frequency to effectively handle threats. Additionally, a network trained via supervised learning is employed to generate reference commands, accelerating the training convergence of reinforcement learning. Simulation results demonstrate the effectiveness of the proposed guidance law, highlighting its high computational efficiency, command stability, and robustness. Importantly, the approach offers convenience in extending to multiple no-fly zones and accommodating vast initial state spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Speague完成签到,获得积分10
1秒前
桐桐应助山晴采纳,获得10
1秒前
HCT发布了新的文献求助10
2秒前
Akim应助FANTA采纳,获得50
2秒前
张俊发布了新的文献求助10
3秒前
3秒前
leibo1994发布了新的文献求助10
4秒前
4秒前
4秒前
AJIN发布了新的文献求助10
5秒前
LR完成签到,获得积分10
7秒前
7秒前
7秒前
YiWei发布了新的文献求助10
8秒前
8秒前
ln发布了新的文献求助10
9秒前
自然的南露完成签到 ,获得积分10
10秒前
刘丽蓓发布了新的文献求助10
11秒前
11秒前
小药师发布了新的文献求助10
11秒前
12秒前
思源应助mof采纳,获得10
13秒前
13秒前
远不止这些完成签到,获得积分10
13秒前
13秒前
song发布了新的文献求助10
13秒前
传奇3应助wwwwww采纳,获得10
15秒前
17秒前
大猫发布了新的文献求助10
18秒前
Speague发布了新的文献求助10
18秒前
水色完成签到,获得积分10
19秒前
19秒前
dawei完成签到 ,获得积分10
19秒前
Ni完成签到,获得积分10
20秒前
尾状叶完成签到 ,获得积分10
23秒前
24秒前
小药师完成签到,获得积分10
24秒前
年糕.发布了新的文献求助10
25秒前
26秒前
斯文败类应助duxiao采纳,获得10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352