材料科学
离子
质子化
阳离子聚合
电导率
金属
分子
星团(航天器)
无机化学
结晶学
冶金
物理化学
化学
计算机科学
高分子化学
程序设计语言
有机化学
作者
Hui Gao,Ling Yu,Jian Zhang,Jin-Ping Gao,Xian‐Ming Zhang
标识
DOI:10.1021/acsmaterialslett.3c01552
摘要
Trinuclear M3(μ3-O) cluster-based MOFs, possessing superior chemical tolerance and modular adjustability, have recently exhibited impressive proton conductivity through proper functional modification and guest encapsulation. In order to clarify how accurate regulation of framework electrification via aliovalent metal substitution on conductive properties is, we screen and prepare a CPM-200 model system, including an In-ABTC-H2O with cationic [In3(μ3-O)(COO)6] cluster, a neutral [InMn2(μ3-OH)(COO)6]-based In/Mn-ABTC-H2O, two [Mn3(μ3-OH)(COO)6] anion-type Mn-ABTC-DMA and Mn(H2O)6@Mn-ABTC-H2O, which contain terminal coordinated DMA and H3O+ molecules, respectively. Accompanied by the gradual aliovalent substitution of Mn(II) for In(III) in [In3(μ3-O)(COO)6] unit, the original NO3– ion in In-ABTC-H2O can be replaced to give an unusual [Mn(H2O)6]2+ cation in Mn-ABTC-H2O for charge balance. The synergistic effect of protonated metal node, hydrated metal ion, and contracted pore volume endows a high conductivity value of Mn(H2O)6@Mn-ABTC-H2O up to 1.15 × 10–2 S/cm. Moreover, a conductive mechanism is visually exhibited by molecular dynamics (MD) simulation, suggesting Grotthuss-like migration in void spaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI