Chitosan, an economically viable and versatile biopolymer, exhibits a wide array of advantageous physicochemical and biological properties. Chitosan nanocomposites, formed by the amalgamation of chitosan or chitosan nanoparticles with other nanoparticles or materials, have garnered extensive attention across agricultural, pharmaceutical, and biomedical domains. These nanocomposites have been rigorously investigated due to their diverse applications, notably in combatting plant pathogens. Their remarkable efficacy against phytopathogens has positioned them as a promising alternative to conventional chemical-based methods in phytopathogen control, thus exploring interest in sustainable agricultural practices with reduced reliance on chemical interventions. This review aims to highlight the anti-phytopathogenic activity of chitosan nanocomposites, emphasizing their potential in mitigating plant diseases. Additionally, it explores various synthesis methods for chitosan nanoparticles to enhance readers' understanding. Furthermore, the analysis delves into elucidating the intricate mechanisms governing the antimicrobial effectiveness of these composites against bacterial and fungal phytopathogens.