Named entity recognition of Traditional Chinese Medicine cases based on RoBERTa-BiLSTM-CRF

计算机科学 人工智能 任务(项目管理) 召回率 中医药 注释 命名实体识别 模式识别(心理学) 自然语言处理 机器学习 医学 病理 替代医学 管理 经济
作者
Qifeng Lou,Shutong Wang,Jiahao Chen,Dongmei Mu,Ying Wang,Lili Huang
标识
DOI:10.1109/bibm58861.2023.10385347
摘要

Named entity recognition of Traditional Chinese Medicine cases plays an important position in TCM text mining. In this research , RoBERTa-BiLSTM-CRF model is constructed to realize the named entity recognition task of TCM cases text. With RoBERTa as the pre-training model, BiLSTM as the feature extractor, and CRF as the sequence annotation, the recognition of six entity named entity types, namely, symptom, tongue diagnosis, pulse diagnosis, prescription, dialectic, and Chinese medicine, is realized by manually annotating the corpus set. After iterative training of the model, the accuracy of the comprehensive experimental results was 96. 24% for accuracy, 83. 51% for precision, 88. 39% for recall, and 85. 88% for F-value; In each classification task, the accuracy rate of symptom was 79. 16%, the accuracy rate of T tongue diagnosis was 64. 59%, the accuracy rate of pulse diagnosis was 61. 83%, the accuracy rate of prescription was 90. 35%, the accuracy rate of dialectic was 77. 94%, and the accuracy rate of Chinese medicine was 98. 02%. Named entity recognition using RoBERTa-BiLSTM-CRF model provides effective support for TCM knowledge discovery, construction of knowledge graphs in TCM field and assisting physicians to utilize the potential application values in Traditional Chinese Medicine cases more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪南烟完成签到,获得积分10
刚刚
1秒前
羊羊完成签到 ,获得积分10
1秒前
cccyyy完成签到,获得积分10
2秒前
4秒前
4秒前
深情安青应助LSH970829采纳,获得10
4秒前
4秒前
jianning发布了新的文献求助10
4秒前
5秒前
xue发布了新的文献求助10
6秒前
从容的巧曼完成签到 ,获得积分10
6秒前
eva应助ys1008采纳,获得30
6秒前
7秒前
8秒前
慕青应助寂寞的黑夜采纳,获得10
8秒前
可乐发布了新的文献求助10
8秒前
zanilia应助呆瓜采纳,获得10
11秒前
花开发布了新的文献求助30
11秒前
科目三应助叭腐菌采纳,获得10
12秒前
lulu应助王果果采纳,获得10
14秒前
14秒前
小蘑菇应助张yu采纳,获得10
14秒前
彭于晏应助research_cow采纳,获得10
16秒前
16秒前
z3Q应助斯巴达采纳,获得10
17秒前
xiaofei666应助搞怪南烟采纳,获得100
17秒前
尘间雪完成签到,获得积分10
18秒前
cocolu应助石头采纳,获得10
19秒前
嗯哼应助啦啦啦123采纳,获得10
19秒前
20秒前
小航发布了新的文献求助10
21秒前
廿叁完成签到,获得积分10
23秒前
23秒前
研友_VZG7GZ应助a雪橙采纳,获得10
24秒前
zanilia应助GJ采纳,获得10
26秒前
沐沐心完成签到 ,获得积分10
26秒前
无花果应助小航采纳,获得10
27秒前
29秒前
CACT完成签到,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304