甘蓝
固氮菌
生物肥料
葡萄球菌炎
芸苔属
化学
作物产量
园艺
生物
灰葡萄孢菌
细菌
遗传学
作者
Amit Saurabh,Mandeep Kaur,Ruksana Khan,Geetika Guleria,Mamta Shandilya,Sapna Thakur
标识
DOI:10.1080/15226514.2023.2288894
摘要
The growth, yield, and quality of cauliflower (Brassica oleracea var. botrytis L.) cv. Pusa Snowball K-1 were studied using Fe2O3-nano fertilizer (Fe2O3-N) in combination with Azotobacter, Farmyard manure (FYM), and Phosphorus solubilizing bacteria (PSB). Hydrothermally synthesized Fe2O3 nanoparticles characterized with XRD, FTIR, and SEM. The experiment consisting 12 treatments viz. T1 (Fe2O3-N), T2 comprising of Fe2O3-N + FYM + Azotobacter + PSB, T3 (Fe2O3-N + Azotobacter + PSB), T4 (Fe2O3-N + FYM + Azotobacter), T5 (Fe2O3-N + FYM + PSB), T6 (Fe2O3-N + FYM), T7 (Fe2O3-N + Azotobacter), T8 (Fe2O3-N + PSB), T9 (PSB), T10 (Azotobacter), T11 (FYM), and T12 (control). Fe2O3 NPs positively enhance the photosynthetic activity and stimulate catalyze enzymatic action in plant leaves that effect the health of the plant and remarkably increase the crop yield. Application of Fe2O3-nano fertilizer (Fe2O3-N) along the Azotobacter, FYM, and PSB was shown encouraging growth effects to improve the cropping behavior. Fe2O3 NPs positively enhance the photosynthetic activity and stimulate catalyze enzymatic action in plant leaves that effect the health of the plant and remarkably increase the crop yield.
科研通智能强力驱动
Strongly Powered by AbleSci AI