普鲁士蓝
煅烧
阴极
材料科学
离子
化学工程
纳米技术
化学
分析化学(期刊)
电极
电化学
催化作用
有机化学
工程类
物理化学
作者
Zinan Wang,Kaiqi Nie,Moulay Tahar Sougrati,Chang Wang,Zhiqi Liu,Jiaou Wang,Rile Ge,Qiong Zheng,Junhu Wang,Junhu Wang,Junhu Wang
标识
DOI:10.1016/j.cej.2024.151090
摘要
Prussian blue (PB) and its analogues have garnered considerable attention due to their spacious open framework, substantial specific capacity, facile synthesis protocol and cost-effectiveness as cathode materials for sodium-ion batteries (SIBs). Nonetheless, the incomplete electrochemical reaction of low-spin (LS) Fe often results in suboptimal practical specific capacity and diminished specific energy. In this study, a calcination strategy is put forward and successfully activates LS-Fe centers within PB, which exhibits a prolonged high-voltage plateau when employed as a cathode material for SIBs. Notably, PB with LS-Fe activated (denoted as PB-325) contributes with a specific capacity of 65 and 62 mAh/g during the first and fifth charge–discharge cycles, respectively, surpassing those of the pristine material. Comprehensive investigations involving operando 57Fe Mössbauer spectroscopy, ex situ soft X-ray absorption spectroscopy, and density functional theory calculations unveil a charge transfer-induced spin transition phenomenon occurring during the electrochemical reaction process, which involves transfer of charges from HS-Fe to LS-Fe. The intrinsic narrower bandgap and charge-accumulated LS-Fe species both contribute to enhanced reactivity, especially in LS-Fe site, thus leading to increased specific capacity within the high-voltage range and improving the performance of PB-325. This study provides an effective and simple strategy to activate LS-Fe, and deepens the understanding of the mechanisms of high-performance PB cathodes for SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI