机制(生物学)
锂(药物)
失效机理
短路
离子
材料科学
机械故障
法律工程学
工程类
化学
复合材料
心理学
电气工程
物理
精神科
医学
电压
外科
有机化学
量子力学
作者
Zhoujian An,Tianlu Shi,Xiaoze Du,Xinmin An,Dong Zhang,Jianhua Bai
标识
DOI:10.1016/j.est.2024.111819
摘要
The safety issues of lithium-ion batteries under mechanical abuse conditions have attracted widespread attention due to their high uncertainty and risk. This research takes cylindrical lithium-ion batteries as the research object and conducts three-point bending tests on cylindrical lithium-ion batteries with different states of charge (SOC), electrode thicknesses and electrode materials. The mechanical response, voltage changes, temperature changes during the loading process of the battery, and the microstructural changes of the battery's electrodes and separator after the bending test were examined. The results show that the maximum load-bearing capacity of the battery and the displacement corresponding to the short circuit decreases with the SOC of battery; the higher the battery SOC means a faster average temperature rise rate of the battery. When the SOC is higher than 60 %, the battery will experience violent thermal runaway phenomena such as explosions and spouting fire after bending tests. The mass loss rate of the battery is also greatly affected by the battery SOC and the electrode thickness, however, electrode material have almost no effect on the mass loss rate of the battery. According to the SEM images of the electrodes, it is found that short circuits cause graphite particles to break, separators to close and electrolytes oxidize on the surface of positive electrode particles. After triggering the internal short circuit, more broken particles are observed in the positive electrode material of the battery with thicker electrodes and the surface roughness of the broken particles is higher. By comparing the electrode changes of LFP and NCM, it is found that the intensity of the internal electrochemical reactions in NCM is far greater than that in LFP. The research results provide theoretical insights for understanding the electrothermal characteristics and mechanical integrity of lithium-ion batteries under mechanical abuse, which can shed light on the design and optimization of high-performance and safe lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI