Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings

超图 计算机科学 人工智能 分辨率(逻辑) 模式识别(心理学) 数据挖掘 数学 离散数学
作者
Jinxin Wu,Deqiang He,Jiayi Li,Jian Miao,Xianwang Li,Hongwei Li,Sheng Shan
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:247: 110143-110143 被引量:17
标识
DOI:10.1016/j.ress.2024.110143
摘要

Accurate remaining useful life (RUL) prediction of rolling bearings plays a vital role in ensuring the safe operation of mechanical equipment. Graph-based models have become an emerging trend in RUL prediction by converting monitoring samples into graph structures to capture samples' relationships effectively. However, graph-based models only use pairwise samples to model the relationships between samples and cannot capture the non-pairwise high-order relationships between multiple samples. Besides, graph-based models rely heavily on predefined graphs to aggregate relevant features. The bearing monitoring datasets have no explicit structure, and the predefined graph structures cannot characterize datasets. Aiming at these issues, a temporal multi-resolution hypergraph attention network (T-MHGAT) is proposed. Firstly, the bearings' monitoring samples are established and fused into a multi-resolution hypergraph (MHG) to characterize the potential structure of bearings monitoring datasets. Then, a hypergraph attention network (HGAT) is designed to mine the high-order relationships between signal samples on hypergraph data. Meanwhile, multiple gated recurrent units (GRUs) are constructed to capture the signal samples' temporal information. Finally, the linear layer is built after GRUs to output RUL prediction values. Many experiments on two rolling bearing datasets showed the effectiveness of T-MHGAT, which can lay the foundation for predictive equipment maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sean完成签到 ,获得积分10
刚刚
刚刚
无情山水发布了新的文献求助10
1秒前
锦纹完成签到,获得积分10
1秒前
南桥发布了新的文献求助10
1秒前
1秒前
伶俐的书白完成签到,获得积分10
2秒前
科研通AI5应助威武诺言采纳,获得10
2秒前
2秒前
LXL完成签到,获得积分10
2秒前
杳鸢应助三金采纳,获得20
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
英俊的铭应助yyj采纳,获得10
3秒前
SV发布了新的文献求助10
3秒前
4秒前
12发布了新的文献求助10
4秒前
JamesPei应助化学狗采纳,获得10
4秒前
胡图图发布了新的文献求助10
4秒前
5秒前
xm完成签到,获得积分10
6秒前
谦让的含海完成签到,获得积分10
6秒前
所所应助包容的剑采纳,获得10
6秒前
6秒前
7秒前
lynn_zhang发布了新的文献求助10
7秒前
8秒前
xh发布了新的文献求助10
8秒前
所所应助luoshi采纳,获得10
8秒前
飞龙在天完成签到 ,获得积分10
8秒前
深爱不疑完成签到,获得积分10
9秒前
知识四面八方来完成签到 ,获得积分10
9秒前
我就是我完成签到,获得积分10
9秒前
9秒前
9秒前
heart完成签到,获得积分10
9秒前
keroro发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762