已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Introducing TEC-LncMir for practical prediction of lncRNA-miRNA interactions through deep learning of RNA sequence data

技术 序列(生物学) 小RNA 计算机科学 计算生物学 深度学习 人工智能 核糖核酸 机器学习 生物 遗传学 地质学 基因 电离层 地球物理学
作者
Yu Wang,Tingpeng Yang,Yonghong He
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-4154652/v1
摘要

Abstract The interactions between long non-coding RNA (lncRNA) and microRNA (miRNA) play critical roles in many life processes, highlighting the necessity to further advance the performance of the state-of-the-art models. Here, we introduced a novel approach, named TEC-LncMir, for lncRNA-miRNA interaction prediction based on Transformer Encoder and convolutional neural networks (CNNs). TEC-LncMir treats both lncRNA and miRNA sequences as natural languages and encodes them using the Transformer Encoder. It then combines the meaningful representations of a pair of microRNA and lncRNA into a contact map (a three-dimensional array). Afterwards, TEC-LncMir treats the contact map as a multi-channel image, utilizes a four-layer CNN to extract the contact map's features, and then uses these features to predict the interaction between the pair of lncRNA and miRNA. We applied a series of comparative experiments to demonstrate that TEC-LncMir significantly improves lncRNA-miRNA interaction prediction, compared with existing state-of-the-art models. We also trained TEC-LncMir utilizing a large training dataset, and as expected, TEC-LncMir achieves unprecedented performance. Moreover, our approach is the first practical approach for practical miRNA-lncRNA interaction analysis. Specifically, we utilized TEC-LncMir to find microRNAs interacting with lncRNA NEAT1, where NEAT1 performs as a competitive endogenous RNA of the microRNAs’ targets (corresponding mRNAs) in the cellular context. We also demonstrated the regulatory mechanism of NEAT1 in Alzheimer’s disease via transcriptome analysis and sequence alignment analysis. These results reveal a potential regulatory mechanism of NEAT1 in Alzheimer’s disease and show that TEC-LncMir performs well in applications. Our results demonstrate the effectivity of TEC-LncMir and take a significant step forward in lncRNA-miRNA interaction prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lorain发布了新的文献求助10
刚刚
汉堡包应助小巧念露采纳,获得10
1秒前
3秒前
dominic12361完成签到 ,获得积分10
4秒前
风清扬发布了新的文献求助10
5秒前
如履平川完成签到 ,获得积分10
6秒前
7秒前
涛老三完成签到 ,获得积分10
10秒前
bkagyin应助风清扬采纳,获得10
11秒前
KDS完成签到,获得积分10
12秒前
SUn完成签到,获得积分10
12秒前
Orange应助你求我一下采纳,获得10
14秒前
木有完成签到 ,获得积分10
16秒前
Ava应助萤lueluelue采纳,获得10
18秒前
Alex完成签到,获得积分0
19秒前
19秒前
曾经冰露完成签到,获得积分10
19秒前
kk完成签到,获得积分10
20秒前
Erich完成签到 ,获得积分10
22秒前
南北完成签到,获得积分10
25秒前
KDS发布了新的文献求助10
26秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
沉默的觅海完成签到 ,获得积分10
30秒前
花开那年完成签到 ,获得积分10
30秒前
咫尺天涯发布了新的文献求助10
30秒前
30秒前
Mulee发布了新的文献求助30
33秒前
柠ning完成签到,获得积分10
34秒前
夔kk完成签到 ,获得积分10
34秒前
番茄黄瓜芝士片完成签到 ,获得积分10
35秒前
汉堡包应助咫尺天涯采纳,获得10
37秒前
小羊咩完成签到 ,获得积分10
39秒前
Mulee完成签到,获得积分20
43秒前
友好的尔容完成签到,获得积分10
44秒前
风中的又亦完成签到 ,获得积分20
45秒前
adkdad完成签到,获得积分10
45秒前
情怀应助briliian采纳,获得10
47秒前
49秒前
科研通AI2S应助km采纳,获得10
51秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234