Removal of Ocular and Muscular Artifacts From Multi-Channel EEG Using Improved Spatial-Frequency Filtering

计算机科学 工件(错误) 脑电图 人工智能 模式识别(心理学) 盲信号分离 降噪 小波 频域 小波变换 语音识别 频道(广播) 计算机视觉 心理学 计算机网络 精神科
作者
Wuxiang Shi,Yurong Li,Nai‐Qing Cai,Chen Ru-kai,Wei Cao,Jixiang Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3466-3477 被引量:2
标识
DOI:10.1109/jbhi.2024.3378980
摘要

Over recent decades, electroencephalogram (EEG) has become an essential tool in the field of clinical analysis and neurological disease research. However, EEG recordings are notably vulnerable to artifacts during acquisition, especially in clinical settings, which can significantly impede the accurate interpretation of neuronal activity. Blind source separation is currently the most popular method for EEG denoising, but most of the sources it separates often contain both artifacts and brain activity, which may lead to substantial information loss if handled improperly. In this paper, we introduce a dual-threshold denoising method combining spatial filtering with frequency-domain filtering to automatically eliminate electrooculogram (EOG) and electromyogram (EMG) artifacts from multi-channel EEG. The proposed method employs a fusion of second-order blind identification (SOBI) and canonical correlation analysis (CCA) to enhance source separation quality, followed by adaptive threshold to localize the artifact sources, and strict fixed threshold to remove strong artifact sources. Stationary wavelet transform (SWT) is utilized to decompose the weak artifact sources, with subsequent adjustment of wavelet coefficients in respective frequency bands tailored to the distinct characteristics of each artifact. The results of synthetic and real datasets show that our proposed method maximally retains the time-domain and frequency-domain information in the EEG during denoising. Compared with existing techniques, the proposed method achieves better denoising performance, which establishes a reliable foundation for subsequent clinical analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助芒琪采纳,获得10
2秒前
TOO完成签到,获得积分10
3秒前
LXR完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助zjcbk985采纳,获得30
3秒前
3秒前
衍乔完成签到,获得积分20
4秒前
不配.应助朽木采纳,获得10
4秒前
小硕完成签到,获得积分10
4秒前
4秒前
4秒前
fang完成签到,获得积分10
5秒前
h3088173961完成签到,获得积分20
5秒前
6秒前
迅速凡霜完成签到,获得积分10
6秒前
7秒前
深情秋刀鱼完成签到,获得积分10
8秒前
闪击的云完成签到,获得积分10
9秒前
小硕发布了新的文献求助10
10秒前
10秒前
淡然的花卷完成签到,获得积分10
10秒前
火星的雪发布了新的文献求助10
10秒前
10秒前
阿旭发布了新的文献求助10
11秒前
gaoyue发布了新的文献求助10
11秒前
坦率鬼卞完成签到,获得积分10
11秒前
Wa完成签到,获得积分10
12秒前
haha给haha的求助进行了留言
12秒前
笨笨的连虎完成签到,获得积分10
12秒前
jcccc发布了新的文献求助10
13秒前
13秒前
14秒前
爆米花应助未明的感觉采纳,获得10
14秒前
天天快乐应助judy采纳,获得10
14秒前
酷波er应助binglangcha采纳,获得10
14秒前
rainbow发布了新的文献求助10
14秒前
英俊的铭应助student采纳,获得30
15秒前
luct完成签到,获得积分20
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514919
求助须知:如何正确求助?哪些是违规求助? 3097284
关于积分的说明 9234961
捐赠科研通 2792241
什么是DOI,文献DOI怎么找? 1532370
邀请新用户注册赠送积分活动 712002
科研通“疑难数据库(出版商)”最低求助积分说明 707071