High-Performance Reversible Solid Oxide Cells for Powering Electric Vehicles, Long-Term Energy Storage, and CO2 Conversion

储能 功率密度 可再生能源 材料科学 电解 发电 电力 电池(电) 堆栈(抽象数据类型) 环境科学 汽车工程 核工程 工艺工程 功率(物理) 电气工程 计算机科学 电极 化学 工程类 热力学 物理 电解质 程序设计语言 物理化学
作者
Liyang Fang,Fan Liu,Hanping Ding,Chuancheng Duan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:2
标识
DOI:10.1021/acsami.4c00780
摘要

The rapid population growth coupled with rising global energy demand underscores the crucial importance of advancing intermittent renewable energy technologies and low-emission vehicles, which will be pivotal toward carbon neutralization. Reversible solid oxide cells (RSOCs) hold significant promise as a technology for high-efficiency power generation, long-term chemical energy storage, and CO2 conversion. Herein, RSOCs were, for the first time, studied to power electric vehicles. Based on our experimental results, an ideal RSOC stack was established with reasonable assumptions. Subsequently, through analysis and comparison of important merits, such as power densities, energy densities, charging/refueling time, and fuel economy of RSOC-based electric vehicles (RSOCEVs), conventional internal combustor vehicles (ICEVs), and battery-based electric vehicles (BEVs), the advantages and prospects of RSOCEVs were highlighted. Our H2–H2O RSOCs exhibit high electrochemical performances in both fuel cell (peak power density = 1.6 W cm–2 at 750 °C) and electrolysis modes (current density = 2.0 A cm–2 at 1.3 V and 750 °C), along with durable reversible operation under a wide range of conditions. In CO–CO2, our RSOCs achieved excellent performance in fuel cell mode (peak power density = 0.68 cm–2 at 700 °C). Furthermore, a world record current density of 3.4 A cm–2 at 1.5 V and 750 °C was achieved in the CO2 electrolysis mode. Moreover, an assessment of the CO2 electrolysis efficiency was conducted, offering insights for establishing energy storage strategies and mitigating CO2 emissions. Therefore, the RSOC technology has the potential to assume a central role in a future energy system with abundant renewable power generation while mitigating the CO2 released from fossil fuels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的盼兰完成签到,获得积分10
刚刚
2秒前
慧敏完成签到,获得积分10
2秒前
欢_211发布了新的文献求助10
2秒前
华仔应助小乔采纳,获得10
3秒前
寻桃阿玉完成签到 ,获得积分10
3秒前
3秒前
CodeCraft应助含蓄的梦山采纳,获得10
4秒前
5秒前
5秒前
共享精神应助MOMO采纳,获得10
7秒前
renpp822发布了新的文献求助30
7秒前
共享精神应助舒心星星采纳,获得10
8秒前
医痞子完成签到,获得积分10
9秒前
萱萱发布了新的文献求助10
11秒前
MXene完成签到 ,获得积分10
11秒前
14秒前
15秒前
MOMO发布了新的文献求助10
18秒前
欢_211完成签到 ,获得积分10
18秒前
粗心的chen发布了新的文献求助10
18秒前
zhou完成签到,获得积分10
18秒前
厉不厉害你坤哥完成签到,获得积分10
19秒前
hannah完成签到 ,获得积分10
19秒前
19秒前
20秒前
SciGPT应助奕初阳采纳,获得10
21秒前
负责新筠发布了新的文献求助10
22秒前
秋刀鱼的滋味完成签到,获得积分10
23秒前
共享精神应助Joy采纳,获得10
26秒前
26秒前
LexMz完成签到,获得积分10
27秒前
27秒前
fmk完成签到,获得积分10
27秒前
想不出来发布了新的文献求助10
27秒前
超帅冰蝶完成签到,获得积分10
27秒前
27秒前
安紊完成签到,获得积分10
27秒前
77完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174