TOPIQ: A Top-Down Approach From Semantics to Distortions for Image Quality Assessment

计算机科学 人工智能 语义学(计算机科学) 光学(聚焦) 卷积神经网络 图像质量 模式识别(心理学) 机器学习 计算机视觉 图像(数学) 程序设计语言 物理 光学
作者
Chaofeng Chen,Jiadi Mo,Jingwen Hou,Haoning Wu,Liang Liao,Wenxiu Sun,Qiong Yan,Weisi Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2404-2418 被引量:26
标识
DOI:10.1109/tip.2024.3378466
摘要

Image Quality Assessment (IQA) is a fundamental task in computer vision that has witnessed remarkable progress with deep neural networks. Inspired by the characteristics of the human visual system, existing methods typically use a combination of global and local representations (i.e., multi-scale features) to achieve superior performance. However, most of them adopt simple linear fusion of multi-scale features, and neglect their possibly complex relationship and interaction. In contrast, humans typically first form a global impression to locate important regions and then focus on local details in those regions. We therefore propose a top-down approach that uses high-level semantics to guide the IQA network to focus on semantically important local distortion regions, named as TOPIQ. Our approach to IQA involves the design of a heuristic coarse-to-fine network (CFANet) that leverages multi-scale features and progressively propagates multi-level semantic information to low-level representations in a top-down manner. A key component of our approach is the proposed cross-scale attention mechanism, which calculates attention maps for lower level features guided by higher level features. This mechanism emphasizes active semantic regions for low-level distortions, thereby improving performance. TOPIQ can be used for both Full-Reference (FR) and No-Reference (NR) IQA. We use ResNet50 as its backbone and demonstrate that TOPIQ achieves better or competitive performance on most public FR and NR benchmarks compared with state-of-the-art methods based on vision transformers, while being much more efficient (with only ~13% FLOPS of the current best FR method). Codes are released at https://github.com/chaofengc/IQA-PyTorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
豆豆发布了新的文献求助10
1秒前
爱静静应助李颖雪采纳,获得10
1秒前
1秒前
sword完成签到,获得积分10
2秒前
WTH完成签到,获得积分10
2秒前
Kelly完成签到,获得积分10
3秒前
寒桥完成签到,获得积分20
3秒前
3秒前
体贴的叛逆者完成签到,获得积分10
3秒前
小俞完成签到,获得积分10
4秒前
archaea完成签到,获得积分10
4秒前
4秒前
思源应助weiqi采纳,获得10
5秒前
muyao关注了科研通微信公众号
5秒前
6秒前
情怀应助冬虫夏草采纳,获得10
6秒前
去看海嘛应助糖豆豆采纳,获得10
6秒前
7秒前
cry完成签到,获得积分10
8秒前
合适怡完成签到,获得积分10
9秒前
橙子完成签到,获得积分10
9秒前
17完成签到,获得积分10
9秒前
9秒前
cjq完成签到,获得积分10
9秒前
小笼包完成签到,获得积分10
10秒前
盼盼完成签到,获得积分10
10秒前
zzzzzz完成签到,获得积分20
10秒前
11秒前
11秒前
11秒前
cz完成签到 ,获得积分10
12秒前
月樱完成签到,获得积分10
12秒前
含蓄的明雪完成签到,获得积分10
13秒前
13秒前
13秒前
zzzzzz发布了新的文献求助10
13秒前
ljc完成签到 ,获得积分10
13秒前
胖大星完成签到,获得积分10
13秒前
丘比特应助禹子骞采纳,获得10
14秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180123
求助须知:如何正确求助?哪些是违规求助? 2830514
关于积分的说明 7978030
捐赠科研通 2492090
什么是DOI,文献DOI怎么找? 1329207
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954