Multi-Think Transformer for Enhancing Emotional Health

计算机科学 音乐疗法 推论 变压器 机制(生物学) 投票 过程(计算) 人工智能 心理学 心理治疗师 电压 哲学 物理 认识论 量子力学 政治 政治学 法学 操作系统
作者
Jiarong Wang,Jiaji Wu,Shaohong Chen,Xiangyu Han,Mingzhou Tan,Jianguo Yu
出处
期刊:ACM Transactions on Internet Technology [Association for Computing Machinery]
标识
DOI:10.1145/3652512
摘要

The smart healthcare system not only focuses on physical health but also on emotional health. Music therapy, as a non-pharmacological treatment method, has been widely used in clinical treatment, but music selection and generation still require manual intervention. AI music generation technology can assist people in relieving stress and providing more personalized and efficient music therapy support. However, existing AI music generation highly relies on the note generated at the current time to produce the note at the next time. This will lead to disharmonious results. The first reason is the small errors being ignored at the current generated note. This error will accumulate and spread continuously, and finally make the music become random. To solve this problem, we propose a music selection module to filter the errors of generated note. The multi-think mechanism is proposed to filter the result multiple times, so that the generated note is as accurate as possible, eliminating the impact of the results on the next generation process. The second reason is that the results of multiple generation of each music clip are not the same or even do not follow the same music rules. Therefore, in the inference phase, a voting mechanism is proposed in this paper to select the note that follow the music rules that most experimental results follow as the final result. The subjective and objective evaluations demonstrate the superiority of our proposed model in generation of more smooth music that conforms to music rules. This model provides strong support for clinical music therapy, and provides new ideas for the research and practice of emotional health therapy based on the Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
愉快夕阳完成签到,获得积分20
1秒前
1秒前
1秒前
ding应助zheng能量采纳,获得10
1秒前
park完成签到,获得积分10
2秒前
2秒前
3秒前
灰灰完成签到 ,获得积分10
3秒前
勤恳的毛衣完成签到,获得积分10
4秒前
4秒前
orixero应助张土豆采纳,获得10
5秒前
5秒前
wangtao发布了新的文献求助10
6秒前
YanZhe完成签到,获得积分10
8秒前
zq完成签到,获得积分10
8秒前
8秒前
愉快夕阳发布了新的文献求助20
9秒前
9秒前
姜橙子发布了新的文献求助10
10秒前
tracywan发布了新的文献求助10
10秒前
11秒前
wangtao完成签到,获得积分10
13秒前
朱祥龙完成签到,获得积分10
13秒前
14秒前
zheng能量发布了新的文献求助10
15秒前
英姑应助杨冰采纳,获得10
16秒前
16秒前
WYX发布了新的文献求助10
18秒前
20秒前
21秒前
22秒前
研友_nv2r4n完成签到,获得积分10
24秒前
mo完成签到,获得积分20
24秒前
苏su完成签到,获得积分10
25秒前
丘比特应助wujiasheng采纳,获得10
25秒前
25秒前
mo发布了新的文献求助10
27秒前
WYX完成签到,获得积分10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292561
求助须知:如何正确求助?哪些是违规求助? 2928864
关于积分的说明 8438726
捐赠科研通 2600953
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642924