Mechanistic study of direct coupling of CO2 and C2H4 over atomically dispersed metal at graphene edges

石墨烯 材料科学 联轴节(管道) 金属 纳米技术 冶金
作者
Quy P. Nguyen,Zaheer Masood,Bin Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:488: 150922-150922
标识
DOI:10.1016/j.cej.2024.150922
摘要

Direct coupling of CO2 and ethylene (hereinafter DCCE) to acrylic acid is valuable for valorizing CO2 to manufacture acrylate-derived products. However, previous studies in DCCE have been limited on molecular catalysts with challenges in improving catalytic performance. In this work, we employed density functional theory calculations and ab initio molecular dynamics simulations to investigate the heterogeneous catalysis of DCCE over atomically dispersed metal centers at nitrogen-doped zigzag edge of graphene. Based on competitive adsorption and structural stability, Mo, Cr, V, Ru, and Ni active sites are chosen to explore the reaction kinetics. We find that the activation barriers are determined by the charge redistribution at transition states, which explains the trend of activity for the C-C coupling and the hydrogen transfer, two key steps in DCCE. Furthermore, we show that the intramolecular hydrogen transfer (rate-limiting step) is hindered due to the lack of local coordinate at the active sites. We thus propose to use co-adsorbed water as a "proton-exchanger" following a water-assisted route, and show that the activation barriers are reduced over all metal centers. Particularly, water promotes the hydrogen transfer over metals with strong CO2-ethylene co-activation and facile C-C coupling kinetics, which could be considered promising for DCCE. In both mechanisms, the stability of metallactone intermediate can be used to predict the catalytic activity. It is anticipated that the insights from this work can provide guidelines for mimicking well-defined multifunctional active sites in molecular catalysts to design heterogeneous catalysts for such C-C coupling, which advances catalytic utilization of CO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Carrer完成签到,获得积分10
1秒前
1秒前
小巧雪糕发布了新的文献求助10
2秒前
monicaaaa关注了科研通微信公众号
2秒前
失眠店员发布了新的文献求助10
2秒前
坤坤发布了新的文献求助10
2秒前
2秒前
大黑狗发布了新的文献求助10
3秒前
CodeCraft应助练习者采纳,获得10
3秒前
3秒前
桐桐应助wjm采纳,获得10
3秒前
ZL发布了新的文献求助10
4秒前
在云里爱与歌完成签到,获得积分10
4秒前
Peiyu完成签到,获得积分10
4秒前
MollyJJ完成签到,获得积分10
4秒前
4秒前
善良的硬币完成签到,获得积分10
4秒前
Alberta完成签到,获得积分10
5秒前
5秒前
任生平发布了新的文献求助10
5秒前
sanxing发布了新的文献求助10
5秒前
少年珮完成签到,获得积分10
5秒前
大模型应助失眠店员采纳,获得10
6秒前
星辰大海应助小鹿采纳,获得10
6秒前
7秒前
ly发布了新的文献求助10
8秒前
宇与鱼完成签到,获得积分10
8秒前
aaaa发布了新的文献求助10
8秒前
鱼子酱应助弈心采纳,获得10
9秒前
xinxin发布了新的文献求助10
9秒前
安安完成签到,获得积分10
9秒前
多米发布了新的文献求助10
10秒前
樊樊完成签到 ,获得积分20
10秒前
qiu完成签到,获得积分10
10秒前
10秒前
56jhjl完成签到,获得积分10
10秒前
情怀应助小酒窝采纳,获得10
11秒前
休亮发布了新的文献求助10
11秒前
sss关注了科研通微信公众号
12秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122356
求助须知:如何正确求助?哪些是违规求助? 2772858
关于积分的说明 7714795
捐赠科研通 2428308
什么是DOI,文献DOI怎么找? 1289700
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183